地震被害の VR 映像生成のための三次元点群の平滑化

Smoothing of Point Cloud for Generating VR Video Image of Earthquake Damage

○山下 拓三*1

Takuzo Yamashita^{*1}

*1 防災科学技術研究所地震減災実験研究部門 主任研究員 博士(工学)

Chief Researcher, Earthquake Disaster Mitigation Research Division, National Research Institute for Earth Science and Disaster Resilience, Dr. Eng.

キーワード:三次元点群; バーチャルリアリティ; 最適化問題; **Keywords:** Point cloud; virtual reality; optimization problem.

1. はじめに

防災科学技術研究所では、Eーディフェンス実験を活用 した地震被害の仮想現実 (VR)体験システム¹⁾の開発を進 めている.著者は、2015年実施の10層RC建物実験²⁾に おいて、空間センサー (Kinect v2)を用いて三次元点群の 時刻歴データを取得し、ヘッドマウントディスプレイ (HMD)で表示する高い臨場感のある室内映像の作成に取 り組んでいる.リアルタイムで高品質の映像をHMDで表 示するためには、三次元点群からメッシュを作成し、その メッシュを粗化してデータを削減する方法が考えられる. しかし、計測ノイズの影響により得られた三次元点群から メッシュを生成すると凹凸のある面が生成されて、十分な 映像の品質を確保できない.また、そのようなメッシュを 粗化しても品質は改善されない.

本報告では、3次元点群を平滑化する最適化手法を提案 し、10層RC実験で取得した3次元点群に適用する.平滑 化された点群に対して、メッシュを生成して、そのメッシ ュを粗化し、得られたメッシュを可視化して提案手法の有 効性を検証する.

3.3 次元点群の平滑化手法

3.1. 最適化問題

3 次元座標の各成分 x, y, z に対して, 次式の最適化問 題を構成する.

$$\min_{\mathbf{x}} \sum_{i} \left| \frac{\partial^{2} x(\boldsymbol{\xi})}{\partial \boldsymbol{\xi}^{2}} \right|_{\boldsymbol{\xi} = \boldsymbol{\xi}_{i}} + \left| \frac{\partial^{2} x(\boldsymbol{\xi})}{\partial \eta^{2}} \right|_{\boldsymbol{\xi} = \boldsymbol{\xi}_{i}} s. t. \left| x(\boldsymbol{\xi}_{i}) - \hat{x}(\boldsymbol{\xi}_{i}) \right| \le e^{x}(\boldsymbol{\xi}_{i})$$
(1)

$$\min_{\mathbf{y}} \sum_{i} \left| \frac{\partial^{2} y(\boldsymbol{\xi})}{\partial \boldsymbol{\xi}^{2}} \right|_{\boldsymbol{\xi} = \boldsymbol{\xi}_{i}} + \left| \frac{\partial^{2} y(\boldsymbol{\xi})}{\partial \eta^{2}} \right|_{\boldsymbol{\xi} = \boldsymbol{\xi}_{i}} s.t. \left| y(\boldsymbol{\xi}_{i}) - \hat{y}(\boldsymbol{\xi}_{i}) \right| \le \epsilon^{y}(\boldsymbol{\xi}_{i})$$
(2)

$$\min_{z} \sum_{i} \left| \frac{\partial^{2} z(\xi)}{\partial \xi^{2}} \right|_{\xi = \xi_{i}} + \left| \frac{\partial^{2} z(\xi)}{\partial \eta^{2}} \right|_{\xi = \xi_{i}} s.t. \left| z(\xi_{i}) - \hat{z}(\xi_{i}) \right| \le \epsilon^{z}(\xi_{i})$$
(3)

日本建築学会情報システム技術委員会

なお、 $\boldsymbol{\xi} = (\xi, \eta)$ は画像座標,下付き添字*i*は点群のインデッ クスで,上付きの[^]は計測データを表している.以降,*x*, *y*,*z*成分について同じ手順のため、*x*成分を例に説明する. 3 次元点群の計測ノイズに起因する凹凸を低減するために, 計測値からの誤差が許容できる範囲 $\epsilon^{x}(\boldsymbol{\xi}_{i})$ で点群を動かし て,画像座標に対して3次元座標の各成分が滑らかに分布 するように最適化問題を構成している.

添字*i*は画像座標の1次元のインデックスであるが,画 像座標の縦方向のインデックス,横方向のインデックスを それぞれ*α*,βとして,必要に応じて1対1対応となる2種 類のインデックスを使い分けて表記する.

続いて,次式により偏微分項を差分化する.

$$\frac{\partial^2 x(\xi)}{\partial \xi^2} \bigg|_{\xi = \xi_{\alpha,\beta}} \approx x(\xi_{\alpha+1,\beta}) - 2x(\xi_{\alpha,\beta}) + x(\xi_{\alpha-1,\beta})$$
$$:= x_{\alpha+1,\beta} - 2x_{\alpha,\beta} + x_{\alpha-1,\beta} =: a_{\alpha,\beta}$$
(4)

$$\frac{\partial^2 x(\boldsymbol{\xi})}{\partial \eta^2}\Big|_{\boldsymbol{\xi}=\boldsymbol{\xi}_{\alpha,\beta}} \approx x\left(\boldsymbol{\xi}_{\alpha,\beta+1}\right) - 2x\left(\boldsymbol{\xi}_{\alpha,\beta}\right) + x\left(\boldsymbol{\xi}_{\alpha,\beta-1}\right)$$
$$\coloneqq x_{\alpha,\beta+1} - 2x_{\alpha,\beta} + x_{\alpha,\beta-1} =: b_{\alpha,\beta} \qquad (5)$$

なお,以降の式を見やすくするために係数a,bを導入している.差分化された目的関数は次式で表される.

$$F = \sum_{\alpha,\beta} \left\{ \left| a_{\alpha,\beta} \right| + \left| b_{\alpha,\beta} \right| \right\}$$
(6)

3.2. 目的関数の近似

目的関数は原点で微分できない絶対値の関数を含んでいることから,解析的に設計変数を求めることができない. そこで絶対値の関数を次式のように 2 次関数で近似する.

$$\left|a_{\alpha,\beta}\right| \approx \frac{a_{\alpha,\beta}^{2}}{2c_{\alpha,\beta}} + \frac{c_{\alpha,\beta}}{2} \text{ for } c_{\alpha,\beta} > 0$$
 (7)

$$|b_{\alpha,\beta}| \approx \frac{b_{\alpha,\beta}^2}{2d_{\alpha,\beta}} + \frac{d_{\alpha,\beta}}{2} \text{ for } d_{\alpha,\beta} > 0$$
 (8)

-20 -

第42回情報・システム・利用・技術シンポジウム論文集, 20-23, 2019年12月, 東京 Proceedings of the 42nd Symposium on Computer Technology of Information, Systems and Applications, AIJ, 20-23, Dec., 2019, Tokyo

絶対値の関数を2次関数で近似するため,反復計算により 近似最適化問題を解くことになる.そこで,n回目の反復 での値を上添字(n)で表すと,この時,

$$c_{\alpha,\beta}^{(n)} := \left| a_{\alpha,\beta}^{(n)} \right| = \left| x_{\alpha+1,\beta}^{(n)} - 2x_{\alpha,\beta}^{(n)} + x_{\alpha-1,\beta}^{(n)} \right|$$
(9)

$$d_{\alpha,\beta}^{(n)} \coloneqq \left| b_{\alpha,\beta}^{(n)} \right| = \left| x_{\alpha,\beta+1}^{(n)} - 2x_{\alpha,\beta}^{(n)} + x_{\alpha,\beta-1}^{(n)} \right|$$
(10)

とすると、絶対値の関数と近似に用いた2次関数の関係は 図1のようになる.

Figure 1. Approximation of an absolute value function using a quadratic function.

以上より, *n*+1 回目の反復での点(*α*, *β*)についての目的関数の近似値は次式で表される.

$$F_{\alpha,\beta}^{(n+1)} = \frac{\left\{a_{\alpha,\beta}^{(n+1)}\right\}^{2}}{2c_{\alpha,\beta}^{(n)}} + \frac{c_{\alpha,\beta}^{(n)}}{2} + \frac{\left\{b_{\alpha,\beta}^{(n+1)}\right\}^{2}}{2d_{\alpha,\beta}^{(n)}} + \frac{d_{\alpha,\beta}^{(n)}}{2}$$
$$= \frac{1}{2} \left[\frac{1}{c_{\alpha,\beta}^{(n)}} \left(x_{\alpha+1,\beta}^{(n+1)} - 2x_{\alpha,\beta}^{(n+1)} + x_{\alpha-1,\beta}^{(n+1)}\right)^{2} + c_{\alpha,\beta}^{(n)} + \frac{1}{d_{\alpha,\beta}^{(n)}} \left(x_{\alpha,\beta+1}^{(n+1)} - 2x_{\alpha,\beta}^{(n+1)} + x_{\alpha,\beta+1}^{(n+1)}\right)^{2} + d_{\alpha,\beta}^{(n)}\right]$$
(11)

3.3. 制約条件式の閾値の計算

制約条件式での閾値 $\epsilon^{x}(\xi_{\alpha,\beta})$ は、点群が動ける範囲を指定 するものであり、対象とする点の周囲の点群の値をもとに 次式により求める.

$$\epsilon^{x}(\xi_{\alpha,\beta}) = \sqrt{\frac{1}{N} \sum_{k=\alpha-n_{s}}^{\alpha+n_{s}} \sum_{l=\beta-n_{s}}^{\beta+n_{s}} f_{k,l}}$$
(12)

ここに、 n_s は計算に用いる周辺の点群の個数を指定する変数で、 $n_s = 2$ の時 25 個の点群の値が用いられる.また、

$$f_{k,l} := \begin{cases} \left(x_{k,l} - x_{\alpha,\beta}\right)^2 & if \quad \frac{\left|d_{k,l} - d_{\alpha,\beta}\right|}{d_{\alpha,\beta}} < tol_1 \\ 0 & if \quad \frac{\left|d_{k,l} - d_{\alpha,\beta}\right|}{d_{\alpha,\beta}} \ge tol_1 \\ d_{k,l} := \sqrt{x_{k,l}^2 + y_{k,l}^2 + z_{k,l}^2} \end{cases}$$
(13)

である.式(12)は標準偏差に類似した式であるが,式(10)に 示すように点(k,l)が対象の点(α , β)と3 次元空間上で距離 が離れている場合は,その値は加算されない.ここで, tol_1 はユーザーが指定する値であり,4節の適用事例では0.05 と設定している.

3.4. 最適化問題の求解

目的関数 $F^{(n+1)} = \sum_{a,\beta} F^{(n+1)}_{a,\beta}$ は,式(11)より, $\mathbf{x}^{(n+1)}$ についての2次形式の項と定数の項で表される.そのことから,(n+1)回目の反復で解くべき最適化問題は以下の2次計画問題となる.

$$\min_{\mathbf{x}} \{\mathbf{x}^{(n+1)}\}^T \mathbf{P}^{(n)} \mathbf{x}^{(n+1)} \text{ s.t } \mathbf{G} \mathbf{x}^{(n+1)} \le \mathbf{h}^{(n)}$$
(15)

ここに, $P^{(n)}$ は $c^{(n)}_{lpha,eta}$, $d^{(n)}_{lpha,eta}$ から計算でき, また,

$$\boldsymbol{G} = \begin{bmatrix} \boldsymbol{I} & -\boldsymbol{I} \end{bmatrix}^T \qquad \boldsymbol{h}^{(n)} = \begin{bmatrix} \boldsymbol{h}^{(n)}_+ & \boldsymbol{h}^{(n)}_- \end{bmatrix}^T$$
(16)

である.ただし、 $h_+^{(n)}, h_-^{(n)}$ のi成分は次式で表される.

 $h_{+,i}^{(n)} = x_i^{(0)} + \epsilon^{x(n)}(\xi_i), \qquad h_{-,i}^{(n)} = x_i^{(0)} - \epsilon^{x(n)}(\xi_i)$ (17)

 2 次計画問題の求解には、Python の最適化ライブラリ CVXOPT³⁾の関数を利用する.

4. 適用事例

本節では、10 層 RC 建物の加振実験の室内において空間 センサー(Kinect v2) で撮影された家具が揺れる前のフレ ーム(Case1)と家具が揺れている際のフレーム(Case2)の 2 フレームのデータを検証用のデータとして用いる.検証用 のデータは、RGB 画像データ(解像度:1920×1080),お よび,深度画像データ(解像度:512×424)である.深度 データの解像度より、解くべき最適化問題の次元は 217,088 である.

作成したメッシュはオープンソースの可視化ソフトである MeshLab_64bit_fp v2016.12(以下, MeshLab)を用いて可 視化した.可視化に際しては RGB 画像をメッシュのテクス チャとして用いた.生成されたメッシュでは境界部で品質 の悪いメッシュが見られたため MeshLab の機能を用いて, メッシュの面積が Case1 では 5mm²以下, Case2 では 3mm² 以下の場合,メッシュのエッジの長さが 80mm 以上の場合, または,接続関係にあるメッシュを削除している.

メッシュの粗化には、MeshLab の Quadratic Edge Collapse Decimation(with texture)の機能を用いた. 設定したパラメー タは削除後の目標メッシュ数 (Target number of faces) のみ であり、その値を 30,000 に設定した.

作成したメッシュは、平滑化無し、粗化無しのメッシュ (non-smoothing fine mesh)、平滑化無し、粗化有りのメッシ ユ (non-smoothing coarse mesh)、平滑化有り、粗化無しの メッシュ (smoothing fine mesh)、平滑化有り、粗化有りの メッシュ (smoothing coarse mesh) の4パターンである.

表1にこれら4パターンのメッシュの節点とメッシュの 総数を示す.粗化についていずれのケースでも,元のメッ シュの総数の 1/10 以下である設定パラメータとほぼ同じ

(a) Casel							
	Non-smoothing		Smoothing				
	Fine	Coarse	Fine	Coarse			
Vertices	163,385	17,447	176,432	19,312			
Faces	313,047	29,999	336,775	30,000			
		(b) Case?					

(a) Casa1

Table 1. Total number of vertices and faces.

(b) Case2							
	Non-smoothing		Smoothing				
	Fine	Coarse	Fine	Coarse			
Vertices	158,747	17,714	179,507	19,828			
Faces	303,380	29,999	340,872	30,000			

のメッシュ数に削減できている. Case1 と Case2 での室内 の RGB 画像と 3 次元画像をそれぞれ図 2, 図 3 に示す. ここで 3 次元画像として smoothing fine mesh の結果を示し ている. オクルージョンにより後ろの家具の映像は生成で きていないが,実験では,複数台の空間センサーで時刻同 期をして撮影していることから,これらのデータを統合し た映像の作成が今後の課題となる.

図4にCase1での4パターンの本棚の3次元画像の比較 を示す. 平滑化することにより,家具のエッジが滑らかに 表現されて映像の見た目が良くなっていることがわかる. また,粗化した場合,元の映像と見た目に大きな違いがな く,平滑化したメッシュでは見た目が損なわれずデータ量 を1/10以下に低減することができている.メッシュをみる と平滑化しない場合,元のメッシュは,家具の平らな面で も凹凸があることが確認できる.一方,平滑化することに より凹凸が解消されていることが確認できる.粗化した場 合,家具の平らな面では平滑化したメッシュのほうがより 粗くメッシュ分割ができていることがわかる.図5に Case2での4パターンの本棚の3次元画像の比較を示す. 加振時の家具が動いている場合でも,Case1と同様の結果 が得られている.Case2のほうが平滑化の有無による見た 目の違いはそれほど大きくないがこれは,空間センサーと 家具の距離が近く計測ノイズが小さいためと解釈できる.

5. おわりに

本研究では、計測ノイズを有する三次元点群を平滑化す る最適化手法を提案した.10層RC建物のE-ディフェン ス実験で取得された室内の3次元点群データに提案手法を 適用して点群の平滑化を行い、その点群データからテクス チャ付きメッシュを作成して3次元映像を作成した.その 結果、計測ノイズに由来する面の凹凸を解消した品質の高 いメッシュを作成でき3次元映像の品質向上を確認した. 更に、そのメッシュをメッシュ数が1/10程度に削減される ように疎化しても映像の品質が変わらないことを確認した.

本手法は、三次元点群データを3次元画像計測に利用す るためのノイズ除去手法としても応用の可能性がある。今 後の研究として、振動台実験において本手法をノイズ除去 に用いて空間センサーによる3次元変位計測を試み、モー ションキャプチャ等の他の変位計測手法との比較により、 応用の可能性を検証する予定である。

Fig 2. RGB image (upper) and 3D image (lower) for Case1.

Fig 3. RGB image (upper) and 3D image(lower) for Case2.

Figure 4. Shelves without meshes (upper pictures) and with meshes (lower pictures) for Case1. (a) non-smoothing fine mesh; (b) non-smoothing coarse mesh; (c) smoothing fine mesh; (d) smoothing coarse mesh.

Figure 5. Shelves without meshes (upper pictures) and with meshes (lower pictures) for Case2. (a) non-smoothing fine mesh; (b) non-smoothing coarse mesh; (c) smoothing fine mesh; (d) smoothing coarse mesh.

謝辞

本研究は JSPS 科研費 JP19H02286 の助成を受けたものです. ここに記して謝意を表します.

[参考文献]

 Yamashita, T. et al.: Development of a virtual reality experience system for interior damage due to an earthquake: Utilizing E- Defense shake table test, {¥it Journal of disaster research}, Vol.12, No.5, pp.882-890, 2017.

- 2) 土佐内優介,他:大型震動台による10階建て鉄筋コンクリート造建物の三次元振動実験(2015) 基礎すべり建物の実験方法と応答-,日本建築学会構造系論文集,83巻,750号,pp.1139-1149,2018.
- 3) http://cvxopt.org/, 2019 年 10 月 2 日アクセス.