
Integration of Real-Time Video Communication and Semantic Segmentation

over the Internet Toward Dynamic Occlusion Handling

in Mobile Mixed Reality for Landscape Simulation

○ Daiki KIDO*1, Tomohiro FUKUDA*2 and Nobuyoshi YABUKI*3

*1 Grad. Student, Div. of Sustainable Energy and Environmental Engineering, Grad. School of Engineering, Osaka University.

*2 Assoc. Prof., Div. of Sustainable Energy and Environmental Engineering, Grad. School of Engineering, Osaka University, Ph.D.

*3 Prof., Div. of Sustainable Energy and Environmental Engineering, Grad. School of Engineering, Osaka University, Ph.D.

Keywords: Real-Time video communication; semantic segmentation; Internet; mobile Mixed Reality;

dynamic occlusion handling; landscape simulation.

1. Introduction

To form a good landscape, it is essential to discuss the project

actively among stakeholders. Stakeholders consist of experts

such as architects and government, and non-experts such as

residents. Then it is difficult for stakeholders, especially the

non-experts, to imagine the planned landscape, especially a

three-dimensional (3D) object that has not existed yet. To

facilitate the lively discussion, it is effective to visualize the

planned landscape in the planning and design phase.

Recently, the use of mixed reality (MR) has attracted

attention in the architecture, engineering and construction

(AEC) field. MR is a technology that merges the real and virtual

worlds 1), and MR can produce a realistic landscape simulation

by overlaying a 3D computer graphic (CG) model of a new

building on a camera view of the planning site.

One of the technical challenges in MR is the occlusion

problem, which occurs when virtual objects hide physical

objects that should be rendered in front of virtual objects. As

MR is realized by overlaying 3DCG models on a camera view,

it is difficult to render the correct order of the real and virtual

objects from the line-of-sight. Incorrect occlusion may cause

user confusion related to the depth perception of the user.

Properly occlusion handling is an essential issue for the spatial

understanding between the real and virtual objects.

Previous studies of occlusion handling methods have been

divided into three categories: model-based method, depth-based

method and contour-based method.

Model-based methods create a 3DCG model of the

occlusion target (occlusion model) in pre-processing and

compare the depth of the virtual objects with the occlusion

model to handle occlusion 2). In these methods, if the occlusion

targets move or change its shape over time such as vegetation, it

is difficult to handle occlusion because these methods need to

create an occlusion model in pre-processing.

Depth-based methods acquire the depth information of the

occlusion target from a 3D sensing camera in real-time such as

RGB-D camera or stereo camera, and compare the depth of the

virtual objects with the acquired depth information to handle

occlusion 3), 4). These methods can handle occlusion

dynamically in real-time, however have a limitation of the

distance to obtain depth information and are unsuitable for a

large-scale landscape simulation outdoor.

Contour-based methods detect and track the silhouette of

the occlusion target and handle occlusion. In our previous study,

we developed a MR system for landscape design simulation that

performs dynamic occlusion handling using real-time semantic

segmentation based on deep learning 5) (Figure 1). Semantic

segmentation is a technique to link each pixel in an image to a

class label. Since real-time semantic segmentation processing

involves heavy processing and needs a high-end computer, we

developed a system in which client device transfers image

frames to a server, which performs semantic segmentation

processing on those frames and sends processed frames back to

the client. To realize the client-server communication in this

system, a web application was developed and utilized. However,

the client-server communication based on a web application is

not a versatile method in terms of computer security. It is

necessary to access the server computer for the use of the web

application. If the web application was deployed to access from

everywhere, we have to manage and secure the server computer

and it takes a lot of care and cost.

Figure 1. MR w/ occlusion using semantic segmentation 5)

－212－

日本建築学会情報システム技術委員会

第42回情報･システム･利用･技術シンポジウム論文集，212-215，2019年12月，東京

Proceedings of the 42nd Symposium on Computer Technology of Information，

Systems and Applications，AIJ，212-215，Dec.，2019，Tokyo

報告 H19

Then, we focused on real-time video communication

technology over the Internet to conduct client-server

communication everywhere without deploying the web

application. When we use this video communication technology,

it is not necessary to manage the server computer in terms of

computer security and possible to use this MR system

everywhere. Therefore, in our study, we aim to integrate the

real-time video communication and semantic segmentation

processing over the Internet based on deep learning toward

dynamic occlusion handling in mobile MR for landscape

simulation.

2. Proposed system

2.1. SYSTEM OVERVIEW

The overview of our proposed system is shown in Figure 2.

Considering that the MR system for landscape simulation was

developed in a game engine in our previous study 5), we

integrated a game engine and video communication technology.

2.2. REAL-TIME VIDEO COMMUNICATION

As explained in chapter 1, we focused on real-time video

communication technology to realize client-server

communication for real-time semantic segmentation processing

in mobile MR. To realize real-time video communication, we

adopted WebRTC (Web Real-Time Communications) 6), which

enables web applications and sites to capture and optionally

stream audio and/or video media between browsers in real-time.

WebRTC consists of several interrelated application

programming interfaces (APIs) and protocols which work

together to achieve real-time communication.

In our system, the packages of WebRTC were installed to

both a client device and a server computer. When the

communication with WebRTC is started, peer to peer (P2P)

connection between the client device and the server computer

Figure 2. System overview.

needs to be established. At the timing of establishing a P2P

connection, the stream data that is to be transferred should be

also specified. Then, a client device can specify the image

frames acquired from a webcam connected to a client device as

the stream data, however a server computer doesn’t have any

data to transfer. Therefore a canvas element that has no data was

specified as the stream data in a server computer at first. After

the P2P connection is established, processed frames were

copied to the canvas element that was specified as the stream

data and transferred to the client device (Figure 3).

2.3. BROWSER-PYTHON COMMUNICATION (SERVER)

A server computer performs semantic segmentation processing

on the acquired webcam frames. However, the webcam frames

were acquired on the web browser written in JavaScript and

semantic segmentation processing was performed with python

programming language. Thus in our system, a

JavaScript-Python communication was implemented

In JavaScript, Ajax (asynchronous JavaScript and XML)

was used for JavaScript-Python communication. With Ajax,

web applications can send and receive data from a server

asynchronously without reloading the whole web page. In our

system, webcam frames were transferred to python with Ajax.

In python, flask was used for JavaScript-Python

communication, which is a micro web application framework

written in python. In our system, webcam frames were received

with flask and performed semantic segmentation processing,

and sended processed frames back to JavaScript. The

communication flow between JavaScript and python is shown

in Figure 4.

2.4. BROWSER-GAME ENGINE COMMUNICATION

(CLIENT)

Webcam frames and semantic segmentation images in the web

browser need to be transferred to a game engine in the client

device to develop a MR system. Since it is difficult to send

those images from JavaScript to game engine directly, we

developed an intermediate server at the localhost in client

device using flask.

Figure 3. WebRTC communication in our system (Left: At the

timing of P2P connection, Right: After the P2P connection).

－213－

報告 H19

Figure 4. Communication flow between JavaScript and python.

In JavaScript, we adopted Ajax as explained in 2.3 and

transferred the webcam frames and semantic segmentation

images to the intermediate server.

In a game engine, GET method in HTTP communication

was used to request the data and the game engine received the

webcam frames and semantic segmentation images from the

intermediate server (Figure 5).

3. Verification experiment

A verification experiment was conducted to evaluate the

developed system. We adopted ICNet 7) as a semantic

segmentation method, cityscapes 8) as a dataset for ICNet based

on our previous study 5), and Unity as a game engine. We used a

WebRTC communication platform provided by Skyway 9).

We compared the accuracy of the semantic segmentation

processing and processing speed in Unity between the case that

the communication was over the local area network (LAN) and

over the Internet. In the LAN communication, Unity and python

to perform semantic segmentation were directly communicated

without video communication based on our previous study 5).

The target site of semantic segmentation was selected the same

site whose view from a camera consists of vegetation, building

Figure 5. Communication between JavaScript and game engine.

and fence.

In the accuracy test, 3 frames of each communication were

selected and IoU (Intersection over Union) was calculated,

which is the index to measure the accuracy of image

segmentation. IoU was calculated with the ground-truth

annotation image and predicted segmentation image (Figure 6).

In the client-server communication, the server computer

was connected to LAN/Internet with a cable and the client

device was connected to LAN/Internet with wi-fi. The

communication speed between client-server over the LAN was

measured with the ping command, and the communication

speed on the Internet was measured using a web site 10).

Measured communication speed was shown in Table 1. We used

a surface pro 6 tablet computer with Intel Core i5-8250U of

CPU, 8GB of RAM, and Intel UHD Graphics 620 of GPU as a

client device and video camera, and a desktop computer with

Intel Core i7-8700K of CPU, 32GB of RAM, and NVIDIA

GeForce GTX 1080Ti 11GB of GPU as a server computer. The

client device was panned to acquire the video (Figure 7). The

resolution of the acquired video was 1024 × 576 pixels.

Verification results are shown in Figure 8, 9 and Table 2.

In this verification, we confirmed that the real-time video

communication over the Internet and semantic segmentation

processing were integrated and video frames and semantic

segmentation images were displayed in Unity.

As Figure 8, 9 and Table 2 show, the accuracy of semantic

segmentation over the Internet was lower than over the LAN. It

is considered that this lower accuracy over the Internet was

caused by the bitrate of the video communication with WebRTC.

Bitrate is the number of bits that are conveyed or processed per

unit of time. The transferred video frames were compressed and

the data size became smaller because of the low bitrate of video

communication. Thus, it is necessary to improve the bitrate for

Figure 6. IoU (Intersection over Union) calculation.

Figure 7. Scene of verification experiment.

－214－

報告 H19

Table 1. Measured communication speed.

 Communication Speed [Mbps]

LAN Client-Server 19.2

Internet
Brower(cli.)-Server10) Up: 113.8, Down: 118.7

Browser(ser.)-Server10) Up: 626.5, Down: 625.5

Figure 8. Verification results.

more accurate segmentation.

As Table 2 shows, processing speed in Unity over the

Internet was much faster than over the LAN. However, though

client-server communication over the Internet for uploading

video frames and downloading segmentation images in client

device was about 25 fps (frames per second), the processing

speed of intermediate server-Unity communication in client

device was about 5 fps. It was revealed that the communication

speed between the intermediate server and Unity in the client

device should be improved.

With this system, the camera view can be segmented and

handled as one likes in a game engine. We can use this system

not only for dynamic occlusion handling in MR for landscape

simulation as explained in chapter 1, but also for visual

environmental assessment in real-time; the ratio of each object

for example.

Table 2. Processing speed in Unity.

Communication Processing speed [fps]

LAN 6~7

Internet 15~16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LAN1 LAN2 LAN3 Internet1 Internet2 Internet3

Io
U

 (
In

te
rs

e
c
ti

o
n
 o

ve
r

U
n
io

n
)

Images

Building Fence Sky Vegetation

Figure 9. IoU of semantic segmentation images.

4. Conclusions and future work

In this study, we integrated the real-time video communication

and semantic segmentation processing based on deep learning

over the Internet toward dynamic occlusion handling in mobile

MR for landscape simulation. We conducted a verification

experiment, and we confirmed that real-time video

communication over the Internet and a game engine were

integrated.

In the future works, the bitrate of video communication and

the communication between the intermediate server and a game

engine in client device should be improved. And this system

should be integrated with a MR system for dynamic occlusion

handling.

Acknowledgements

This research has been partly supported by JSPS KAKENHI Grant

Number JP19K12681.

References

 1） Milgram, P. and Kishino, F.: 1994, A Taxonomy of Mixed Reality

Visual Displays, IEICE Transactions on Information Systems,

E77-D, 12, 1321-1329.

 2） Inoue, K., Fukuda, T., Cao, R., and Yabuki, N.: 2018, Tracking

Robustness and Green View Index Estimation of Augmented and

Diminished Reality for Environmental Design:

PhotoAR+DR2017 project, Proceedings of the 23rd International

Conference on Computer-Aided Architectural Design Research in

Asia (CAADRIA 2018), 339-348.

 3） Du, C., Chen, Y., Ye, M., and Ren, L.: 2016, Edge snapping-based

depth enhancement for dynamic occlusion handling in augmented

reality, In the 15th IEEE International Symposium on Mixed and

Augmented Reality (ISMAR 2016), 54-62.

 4） Holynski, A. and Kopt, J.: 2018, Fast depth densification for

occlusion-aware augmented reality, ACM Transactions on

Graphics (TOG), 37 (6), 194, 1-11.

 5） Kido, D., Fukuda, T., and Yabuki, N.: 2019, Development of a

Semantic Segmentation System for Dynamic Occlusion Handling

in Mixed Reality for Landscape Simulation, Proceedings of the

37th eCAADe and 23rd SIGraDi Conference, 1, 641-648

 6） Jennings, C., Hardie, T., and Westerlund, M.: 2013, Real-time

communications for the web, IEEE Communications Magazine,

51, 4, 20-26.

 7） Zhao, H., Qi, X., Shen, A., Shi, J., and Jia, J.: 2018, ICNet for

Real-Time Semantic Segmentation on High-Resolution Images,

In Proceedings of European Conference on Computer Vision

(ECCV 2018), 418-434.

 8） Cordts, M., Omran, S., Ramos, S., Rehfeld, T., Enzweiler, M.,

Benenson, R., Franke, U., Roth, S., and Schiele, B.: 2016, The

cityscapes dataset for semantic urban scene understanding, In

Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition (CVPR 2016), 3213-3223.

 9） Skyway – Enterprise Cloud WebRTC Platform – :

<https://webrtc.ecl.ntt.com/> (accessed 3 October 2019).

 10） Speedtest by Ookla –The Global Broadband Speed Test: <

https://www.speedtest.net/> (accessed 3 October 2019).

－215－

