

A tool for designing with visual algorithms

Andrew I-kang Li＊1 and Rudi Stouffs＊2

*1 Associate Professor, Department of Design and Architecture, Kyoto Institute of Technology, Ph.D.
*2 Associate Professor, Department of Architecture, National University of Singapore, Ph.D.

Keywords: visual algorithms; generative design; algorithmic design; design tools; shape grammar; implementations.

1. Introduction.
Algorithms are an important aspect of digital design and
fabrication; they underlie many technologies like mass
customization. Algorithms are often expressed as computer
programs. These symbolic representations are suitable for
mathematicians, but less so for people who think and work
visually, like designers. These visual workers would prefer to
draw algorithms.

As an example of a visual algorithm, take the pattern
known as the Conway tessellation (Figure 1).

Figure 1. The Conway tessellation

It is a complex figure, but we can construct it easily with

this simple algorithm. Expressed in words, the algorithm
looks like this:

1. Start with a triangle with sides of lengths 1, 2, and √5.
2. Subdivide the triangle into 5 similar triangles. Repeat

optionally.
When the same algorithm is expressed visually, it is easier

to understand. The visual version has the same two parts: an
initial figure (the triangle) and a transformation consisting of
the triangle before subdivision and the same triangle after
subdivision (Figure 2). It is easy to see that, with this
algorithm, we can transform the triangle indefinitely many
times and create many different tessellations. One such
sequence might begin with these three figures (Figure 3).

Figure 2. A visual algorithm for creating Conway tessellations.
It consists of an initial figure (the triangle above) and a
transformation (the before-and-after figures below separated
by an arrow).

Figure 3. The first three figures in one possible development
of a Conway tessellation.

－150－

日本建築学会情報システム技術委員会

第42回情報･システム･利用･技術シンポジウム論文集，150-153，2019年12月，東京

Proceedings of the 42nd Symposium on Computer Technology of Information，

Systems and Applications，AIJ，150-153，Dec.，2019，Tokyo

And it tmight end with these three figures (Figure 4):

Figure 4. The last three figures in one possible development
of a Conway tessellation.

We are developing a tool1), 2) that enables designers to use
visual algorithms. It is known technically as a shape grammar
interpreter. With it, users can draw algorithms, execute them,
and thereby create 2d and 3d designs.

2. The interpreter.
The interpreter runs in the widely used modeling application
Rhinoceros3d (v5 or later). It consists of the visual interface
(the front end) and the engine (the back end). The interface
consists of Python scripts which the user invokes like
commands or menu items. There are just 3 main scripts:
‘initialize’, ‘create rule’, and ‘apply rule’.
 The user runs the ‘initialize’ script when beginning work in
a Rhino document. If the document is new (empty), the
system prepares the document and itself to work with visual
algorithms. If the document is old, i.e,. if it contains an
algorithm from a previous work session, the system reads the
algorithms from the document.
 To create a transformation (known technically as a rule),
the user draws the left and right figures, using Rhino’s native
capabilities. She runs the ‘create rule’ script; the system
formats and reads the rule.
 The user runs the ‘apply rule’ script to apply the
transformation and generate new figures. The system
calculates all the possible new figures and draws them in the

Rhino document.
 In this way, designers can use algorithms without numbers,
coordinates, or other symbols; they work in an entirely visual
manner. In addition, they can develop these figures further
using the many tools available in the Rhino ecosystem. They
can, for example, easily convert their virtual designs to
physical objects; these provide additional artifacts for
thinking about their algorithms.

The user draws an algorithm for the Conway tessellation
that looks just as in Figure 2, and it is ready for use. She can
obtain the sequences in Figures 3 and 4 by simply applying
the transformation to each new figure in turn. She need draw
nothing else; the interpreter calculates and draws the figures.

3. Discussion.
We have been testing the tool in a variety of settings,
including a one-semester class for postgraduate design
students and workshops ranging in length from two to eight
days.

This has led us to some preliminary observations. First,
users easily master the visual interface and are soon able to
concentrate on developing and testing visual algorithms. It
seems reasonable to assume that the visual interface and
automatic generation of figures contributes to this.

Second, users benefit from fabricating tangible objects as
feedback in developing their algorithms (Figures 5-10). This
is easy to do in the Rhino environment, where many tools are
available to support digital fabrication.

Figure 5. Letters in an algorithmically created font.

－151－報告 H78

Figure 6. Studies in tessellation using variant algorithms and
laser-cut in wood.

Figure 7. A laser-cut wood lamp made from a tessellation
algorithm.

Figure 8. 3d-printed chopstick holders.

Figure 9. A 3d-printed accessory case.

The participants in our classes and workshops have all been
new to visual algorithms. As a result, they made few technical
demands on the interpreter. In fact, the interpreter has more
sophisticated capabilities, but we need more experienced
users to evaluate them. For example, in addition to the visual
interface, there is a second interface, implemented in the
Rhino plug-in Grasshopper, that is less visual and intuitive but
technically more powerful (Figure 10). It seems to be worth
investigating how to combine these two interfaces. Finally, we
still have much to learn about how to support designers who
use visual algorithms.

Figure 10. A 3d-printed study. The designer used the less
visual Grasshopper-based interface.

The interpreter can be downloaded at
http://andrew.li/interpreter/.

－152－報告 H78

4. References.
 1） Dy, B. and Stouffs, R.: 2018, Combining geometries and

descriptions: a shape grammar plug-in for Grasshopper, in
Proceedings of eCAADe 2018, Vol. 2, eCAADe, Brussels,
499-508.

 2） Li, A.I.: 2018, A whole-grammar implementation of shape
grammars for designers, in Artificial intelligence for
engineering design, analysis and manufacturing 32(2), 200-207.

 3） Stiny, G.: 1980, Introduction to shape and shape grammars, in
Environment and planning B: planning and design 7, 343-351.

－153－報告 H78

