

Straight Skeleton Computation Optimized

for Automatic Generation of 3D Roof Model

○ Kenichi Sugihara*1, Zhenjiang Shen*2

*1 Professor, Faculty of Information Media, Gifu Kyoritsu University

*2 Professor, Faculty of Geosciences and civil Engineering, Institute of Science and Engineering, Kanazawa University

Summary: 3D building models with roofs are important in several fields, such as urban planning and BIM (Building

Information Model). However, enormous time and labor are required to create these 3D models. In order to automate laborious

steps, a GIS and CG integrated system has been proposed for the automatic generation of 3D building models, based on building

polygons (building footprints) on digital maps. The generation is implemented through straight skeleton computation, in which

three events (‘Edge’ and ‘Split’, ‘Vertex’ events) were proposed. In the computation process, usually three edges propagate i nto a

node. Often it causes an acute angle shape that is not appropriate for roof boards. To avoid the inappropriate shape, in this paper,

methodologies are proposed for adding ‘Line segment’ events besides the conventional events, and for monotone polygon nodes

sorting.

Keywords: straight skeleton, automatic generation, 3D building model, GIS, 3D CG, building footprint

1. Introduction

3D town models, as shown in Figure 1 right, are important in

urban planning and architectural design, e.g., BIM. However,

enormous time and labour has to be consumed to create these 3D

models, using 3D modeling software such as 3ds Max or

SketchUp. In order to automate the laborious steps, a GIS

(Geographic Information System) and CG integrated system has

been proposed for automatically generating 3D building models,

based on building polygons (building footprints) on a digital map

shown in Figure 1 left 1)2)3). In the digital map, not all building

polygons are orthogonal. In either orthogonal or non-orthogonal

polygons, methodologies were proposed for automatically

generating 3D building models with general shaped roofs by the

straight skeleton defined by a continuous shrinking process

proposed by Aichholzer et al.4). In their proposal, two events

(‘Edge’ and ‘Split’ events) will occur during shrinking process.

Besides two events, Eppstein et al. 5) suggested a ‘Vertex’ event

in which two or more reflex vertices reach the same point

simultaneously. A reflex vertex is a vertex whose internal angle

is greater than 180 degrees. However, some roofs are not created

by these three events proposed. In our paper 3), the methodology

was proposed for constructing roof models by assuming ‘the

Third event’ in which a reflex vertex runs into the edge, but the

other split polygon is collapsed into a node (an Edge event

happens in the Split event at the same time).

Our contribution lies in a new methodology for adding a

‘Line segment’ event by which the inappropriate roof board

GIS Application

 (ArcGIS)

*Building polygons on 2D

Digital Map

*Attributes (left up) such as a

texture map code and number

of stories linked to building

polygons

Figure 1. Pipeline of Automatic Generation for 3D Building Models by Straight Skeleton Computation

CG Module
(MaxScript)

*Generation of 3D roof models

by placing roof board primitives

to monotone polygons, and roof

ridges primitives to straight

skeleton segments with Boolean

operation
* Generation of walls, windows

and facade by placing wall and

windows board primitives along

the receded building polygons

by setback distance

*Automatic texture mapping

onto primitives by classifying a

set of primitives according to

attributes

*Automatic texture mapping

onto triangles by classifying a

set of triangles according to

features

GIS Module
(Python & Visual Basic)

*Acquire coordinates of
building polygons’

vertices & attributes by

Python including ArcPy
(ArcGIS)

*Node formation by

edge events and split

events by shrinking
building polygons

through straight skeleton

computation

* Straight skeleton
formation from nodes

* Monotone polygon

generation

Automatically generated 3D urban model

－196－

日本建築学会情報システム技術委員会

第42回情報･システム･利用･技術シンポジウム論文集，196-201，2019年12月，東京

Proceedings of the 42nd Symposium on Computer Technology of Information，

Systems and Applications，AIJ，196-201，Dec.，2019，Tokyo

shape can be avoided. In the straight skeleton computation, the

shrinking process continues if split polygons have non-zero area.

The shrinking process ends when split polygons fall into

‘Vertex’ or ‘Line segment’ since they have no area.

Consequently, a ‘Line segment’ can be a resulting shape of

shrinking procedure, and we classify a ‘Line segment’ event in

which two line segments collapse into one line segment.

Usually three edges propagate into a node. Often it causes an

acute angle shape that is not appropriate for roof boards shown

in Figure 3(d). To avoid the inappropriate shape, a ‘Line

segment’ event is proposed. We also propose ‘monotone polygon

nodes sorting’ by which not self-intersecting monotone polygons

are formed, where ‘monotone polygons’ are the areas divided by

a straight skeleton, as shown in Figure 2(c).

2. Related Work

Since 3D building models are utilized in several fields, various

types of technologies, ranging from computer vision, computer

graphics, photogrammetry, and remote sensing, have been

proposed and developed for creating 3D building models.

Procedural modeling is an effective technique to create 3D

models from sets of rules such as L-systems, fractals, and

generative modeling language 6). Mueller et al.7) have created an

archaeological site of Pompeii by using a shape grammar. They

import data from a GIS database and try to classify imported

mass models as basic shapes in their shape vocabulary. If this is

not possible, they use a general extruded footprint together with

a general roof obtained by the straight skeleton computation

defined by a continuous shrinking process 4).

As a new generalization of straight skeletons, Helda et al.8)

introduce additively-weighted straight skeletons. An

additively-weighted straight skeleton is the result of a

wavefront-propagation process where wavefront edges do not

necessarily start to move at the begin of the propagation,

resulting in an automated generation of roofs in which the

individual facets have different inclinations and start at different

heights.

By using the straight skeleton, Kelly et al.9) present a user

interface for the exterior of architectural models to interactively

specify procedural extrusions, a sweep plane algorithm to

compute a two-manifold architectural surface.

 By the interactive modeling, 3D building models with

plausible detailed façade can be achieved. However, the

limitation of these modeling is the large amount of user

interaction involved10), and the models created are ‘surface

models’ by sweeping or extruding, revolving 2D primitive

geometries. When creating 3D building models for architectural

design and BIM, 3D building models should be made up of

solid geometries primitives which will be parts of the building,

created through Boolean operation. While the ‘surface models’

trace the surface of the parts of 3D building model, the 3D

models used for architectural design should consist of building

component created by CSG (Constructive Solid Geometry).

Thus, the GIS and CG integrated system is proposed for

automatically generating 3D building models by CSG.

3. Pipeline of Automatic Generation

As the pipeline of automatic generation is shown in Figure 1, the

source of 3D models is a digital map that contains building

polygons linked with attributes data, such as the number of

stories and the type of roof, shown in Figure 1 left up. The maps

are then preprocessed at the GIS module, and the CG module

finally generates the 3D building model.

The preprocessing at the GIS module includes the

procedures as follows: (1) Calculate the minimum receding

distance for an Edge event (including a Third and Line segment

event). Until the Edge event occurs, check if a Split event

happens by starting continuous shrinking process. (2) Start

continuous shrinking process in which edges of the polygon

move inward, parallel to themselves at a constant speed shown in

Figure 2(a)&2(b). (3) Detect any event such as a Split, Edge or

Line segment event during shrinking process, and formation of

nodes by these events. The position of the node is calculated by

the intersection of angular bisectors. (4) Inherit and store three or

more ‘original edge ID’ (e.g. edgN in Figure 2(a)) linked to the

node during the shrinking process in which the topology of the

polygon will change. In shrinking process, Figure 2(b) shows

edg2 firstly disappears into Node1, and two edges (edg8 & 9)

secondly result in Node2. Since at least three original edges

sweep into the node, edg1,2 & 3 propagation result in Node1,

and edg4,5 & 10 propagation result in Node3 (by Split event). (5)

Every (original) edge will inquire ‘each node’ having three or

more ID to find out which node has the same ‘original edge ID’.

If so, then nodes of the same ID are collected and the set of

nodes are sorted according to the edge vector to form ‘monotone

polygon’ and the straight skeleton. (6) Calculate the length,

width, center position and inclination of the bounding rectangles

for ‘monotone polygons’. (7) Export the coordinates of

polygons’ vertices, ‘monotone polygons’ information, and

attributes of buildings.

As shown in Figure 1, the CG module receives the

pre-processed data that the GIS module exports, generating 3D

building models. In GIS module, the system measures the length

and inclination of the bounding rectangle for the monotone

－197－論文 R37

polygon that will be a roof board. The CG module generates a

bounding box of the length and width, measured in GIS module.

The monotone polygons will be converted into primitives, i.e.,

thin boxes by Boolean operation between the extrusion of the

monotone polygon and the box primitive.

In case of modeling a building with roofs, the CG module

follows these steps: (1) Generate primitives of appropriate size,

such as boxes, prisms or polyhedra that will form the various

parts of the house. (2) Boolean operations applied to these

primitives to form the shapes of parts of the house, for examples,

making holes in a building body for doors and windows, making

trapezoidal roof boards for a hipped roof and a temple roof. (3)

Rotate parts of the house according to the inclination of the

partitioned rectangle. (4) Place parts of the house. (5) Texture

mapping onto these parts according to the attribute received. (6)

Copy the 2nd floor to form the 3rd floor or more in case of

building higher than 3 stories.

4. Straight Skeleton Computation

Aichholzer et al. 4) introduced the straight skeleton defined as

the union of the pieces of angular bisectors traced out by

polygon vertices during a continuous shrinking process in

which edges of the polygon move inward, parallel to themselves

at a constant speed. The straight skeleton is applied to

constructing general shaped roofs based on any simple building

polygon, regardless of their being rectilinear or not.

As shrinking process shown in Figure 2, each vertex of the

polygon moves along the angular bisector of its incident edges.

This situation continues until the boundary change topologically.

According to Aichholzer et al. 4), there are two possible types of

changes:

(1) Edge event: An edge shrinks to zero, making its neighboring

edges adjacent now.

(2) Split event: An edge is split, i.e., a reflex vertex runs into

this edge, thus splitting the whole polygon. New adjacencies

occur between the split edge and each of the two edges incident

to the reflex vertex.

If the sum of the internal angles of two vertices incident to

an edge is more than 360 degrees, then the length of the edge

increases, otherwise the edge will be shrunk to a point (node).

Shrinking procedure is uniquely determined by the distance dshri

between the two edges of before & after shrinking procedure.

The distance e_dshri is the dshri when an edge event happens in

the shrinking process. e_dshri for the edge (edi) is calculated as

follows:

e_𝐝shri =
Ｌ

i
 cot 0.5 ∗ θi + cot 0.5 ∗ θi+1

where Li is the length of edi, and θi & θi+1 are internal angles of

vertices incident to edi.

When 0.5*θi＋0.5*θi+1＜180 degrees, i.e., the sum of the

internal angles of two vertices incident to an edge is less than

360 degrees, an Edge event may happen unless the edge is

intersected by an angular bisector from a reflex vertex and a

Split event happens.

4.1. HOW STRAIGHT SKELETON IS FORMED

How a straight skeleton and monotone polygons are formed is

as follows.

(1) One simple polygon (P) is given such as shown in Figure

2(a). If there is any reflex vertex in the P, then it can be divided

into two or more polygons.

(2) The system calculates e_dshri (receding distance for an Edge

event, shown in (1)) for all edges and finds the shortest of them.

Then, the system checks if a Split event occurs by increasing

dshri by (e_dshri /n_step). In this way, the shrinking process may

proceed until dshri reaches the shortest e_dshri calculated.

(3) During shrinking until dshri reaches the shortest e_dshri, the

a) b) c) d)

Figure 2. Shrinking process and a straight skeleton, a roof model generated. a) Input polygon (bold) start continuous shrinking process

in which edges of the polygon move inward, parallel to themselves at a constant speed. b) Shrinking polygons (blue) by edge or no

event, and red one by a split event. c) The straight skeleton (blue) and monotone polygons. d) A roof model automatically generated:

each roof board is based on an ‘monotone polygon’.

pt1 pt2

pt3

pt4 pt5

pt6

pt7
pt8

pt9

Node3

Node2

Node1 Node1

Node3

Node2

Node4 Node5

Node7

Node6

edg1
edg2

edg3

edg4

edg5

edg6

edg7

edg8

edg9

edg10

(1)

－198－論文 R37

system checks if a ‘checking angular bisector’ from a reflex

vertex intersects another edge of the polygon or not. If an edge

is found intersected, then the system calculates the node

position by the Split event. The position of the node is

calculated by the intersection of two angular bisectors: one from

the reflex vertex and the other between the intersected edge and

one of two edges incident to the reflex vertex. However, edges

may be intersected by several ‘checking angular bisectors’ from

several reflex vertices. Among the several reflex vertices, the

reflex vertex that gives the shortest dshri will be selected for

calculating the node position.

(4) In the process of (2), a Split event may happen and the

polygon will be divided into some polygons: Ps.

In this ‘Split event checking’ process, all divided polygons are

checked if they can be divided more. As long as there are some

Ps that can be divided, ‘Split event checking’ routine will

continue. After that, the system concentrates on the Edge event

procedure.

(5) In this stage, since the number of polygons divided does not

increase by the Split event, the system can focus on the Edge

event including Third and Line segment event procedures. If the

polygon divided has only three vertices, then the polygon

(triangle) collapses to a node; this is the final stage for the

polygon divided.

(6) While the Edge events are being executed, the topology of

the polygon will change. If the change happens, then the system

re-implement the process from (2) to (5) for the polygon whose

topology has changed. At that moment, the system recalculates

the length of each edge and the internal angle of each vertex in

order to find the shortest dshri for next events. This

re-implementation process continues until all polygons changed

collapse to a node or a line segment.

4.2. NODE STRUCTURE

The generated node is associated with the edges of an original

polygon P (original edge: o-edge) which are identified by

‘o-edge ID’, e.g. edg1 & edg2 in Figure 2(a), since at least three

o-edges (original edges) sweep to form a node. Therefore, at

each event when the node is generated, at least three o-edges are

linked to the node. This means more than three o-edges ID are

stored in the node with an appropriate structure.

In our system, a node has the following properties; (a) ‘Node

Type’ (how the node is risen; by an Edge event or a Split event,

Vertex event, Multiple Edge event and so on) (b) ‘Number of

forming edges’ (usually three edges sweep to form a node, but

more than three edges sweep in case of Multiple Edge event) (c)

‘o-edge ID preceding the vanishing edge’ (by an Edge event) or

‘o-edge ID of the edge incident to the reflex vertex’ (by a Split

event) (d) ‘o-edge ID following the vanishing edge’ (by an Edge

event) or ‘o-edge ID of the other edge incident to the reflex

vertex’ (by a Split event) (e) ‘o-edge ID of at least one vanishing

edge’ (by an Edge event) or ‘o-edge ID of a split edge’ (by a

Split event)

Since three edges usually sweep into the node, three

‘o-edge IDs’ are stored in the property of a node. These IDs are

used for forming a monotone polygon by collecting the nodes

which has the same ‘o-edge ID’ as each own o-edge ID.

In special cases, four or more edges collapse into a node,

such as Node2 in Figure 2 and Node2 & Node5 in Figure 3(e).

In extreme cases, such as a hexagon or a regular polygon, a

star-shaped polygon collapses to a node, four or more o-edges

will sweep into a node. Therefore, a node needs ‘Number of

forming edges’ property. This is the case of a multiple Edge

event or the case Eppstein et al.5) defined as a ‘degenerate case’

in which the straight skeleton can have vertices of degree higher

pt2

edg4

edg3 pt4

pt6 pt5

edg2

pt1

Node1

Node2

Node3

pt9

edg8

Node4

 Node5

Node6

Node8

pt3

edg5 edg1
edg6

pt7

Figure 3. a) A building footprint (An

approximately orthogonal polygon).

b) Input polygon & Shrinking

polygons (blue) moving inward,

parallel to themselves.

c) Input polygon & Shrinking

polygons: Line segment’ events are

considered. d) Straight skeleton &

monotone polygons with an acute

angle. e) Rectified monotone

polygons by ‘Line segment’ event.

pt8

a)

edg9

Node7

pt2

edg4

edg3 pt4

pt6 pt5

edg2

pt1

Node1

edg7

Node2

pt9

edg8

Node3

 Node4

Node5

Node6

pt3

edg5
edg1

pt7

edg9

pt8

b) c)

d) e)

edg11

edg7

edg11

－199－論文 R37

than three, introduced by simultaneous events at the same

location. However, in single or double precision floating point

calculation for the position of the node, it is quite rare for four

or more vertices to reach exactly the same point simultaneously.

To rectify monotone polygons to be appropriate shape for roof

boards, in our system, if multiple edges collapse into a certain

area considered as a point for a node, then they are considered

to converge into the same point and the node is formed.

4.3 LINE SEGMENT EVENT

Since three edges usually sweep into a node, very often this

causes a quite acute angle shape that is not appropriate for roof

board shape shown in Figure 3. In Figure 3(e), pt5 propagates to

join pt2 and four edges (edg1,2,4,5) propagate into Node2,

whereas, in Figure 3(d), pt5 does not join pt2 and goes off

Node2, and three edges (edg4,5,11) result in Node4 with acute

angle shape.

This acute angle shape is also found at the figure of

Eppstein et al.5), which uses perturbation techniques, replacing

the high-degree node with several nodes of degree three,

connected by zero-length edge. In our system, using the

technique completely opposite to Eppstein’s perturbation, a

‘Line segment’ event is proposed where edges are overlapped

and collapse into a line segment instead of a vertex to avoid the

acute angle shape. This so-called snapping function is done by

setting up a certain range for possible ‘Line segment’ events, in

which edges converge into a certain area considered as a line

segment, then they are regarded as converging into the same

line segment.

By a ‘Line segment’ event, two parallel edges converge

into one edge (line segment), and the convergent line segment is

detached from a next shrinking body polygon. But if the

detached line segment leaves no vertex for next shrinking

process, then the line segment is disconnected from a body

skeleton. Therefore, the detached line segment leaves at least

one vertex for next shrinking process. Examples are shown in

the line segment between Node2 and Node5 in Figure 4(c) and

Figure 5(b); one node whose interior angle is flat will remain

for the next shrinking process so as to create the border of

monotone polygons. For example, in Figure 4(c) & Figure 5(b),

four edges (edg11,12,14,15) propagate into Node2, and two

overlapping edges (edg12,14) turn into the line segment

incident to Node2 & nearby Node after edg13 disappeared.

If a configurable range is quite narrow, then edge propagation

will be extended, ending in Node5 as shown in Figure 5(a);

three edges (edg12,14,15) result in Node2, and three edges

(edg1,11,15) result in Node5 whose inner angle is quite acute,

which is improper for roof board shape.

4.4 MONOTONE POLYGON NODES SORTING

According to Aichholzer et al.4), the area divided by a straight

skeleton will be a ‘monotone polygon’. To get the monotone

polygons, the set of the nodes belonging to each original edge

will be sorted according to the ‘coordinate value of node vector

projections’ onto the original edge vector parallel to each

original edge. These nodes are coplanar and will form roof

boards for a 3D building model. However, for some polygon,

this methodology does not work, resulting in self-intersecting

polygons. Figure 5(c) shows monotone polygons for edg13 are

self-intersecting. This is because the edge (connecting Node3 &

Node4) of the monotone polygon is perpendicular to the original

edge (edg13) of the polygon, and the nodes are connected in the

order of ‘node vector projection’. The self-intersections are also

found at edg29 in Figure 5(c) and edg21 in Figure 5(b).

To avoid self-intersection, the azimuth angle of the nodes

belonging to the same monotone polygon is proposed, where

－200－論文 R37

the azimuth is the angle between each original edge vector and a

node vector. The first node in the monotone polygon vertices

numbering is selected from the node with least azimuth, and the

last node is the node with greatest azimuth, since the nodes near

the both ends on an original edge may wrap around both ends

for some monotone polygons, and wrapping around nodes may

not have simply increasing ‘coordinate value’. For example, in

Figure 5(c), the edge (connecting Node1 & Node2) of the

monotone polygon is perpendicular to the original edge (edg29),

and Node1 & Node2 have the same ‘coordinate value’, resulting

in self-intersection at nodes sorting. Thus, the nodes at ends are

sorted by the azimuth angles. Then, the sorting of the nodes is

found successful in a complicated shape polygon such as the

ones in Figure 1 and Figure 4(c).

5. Conclusion

Our system does not always aim at creating current 3D town

models (e.g. 3d models in Google Earth) but generating hipped

roof building models. The roof models created by the straight

skeleton computation are limited to hipped roofs, since short

edges are disappearing when shrinking process proceeds and

long edges are remain as the ridges of the roof shown in Figure

2 & 4. When creating hipped roof models, our system instantly

generates them from building polygons.

The advantage of our generation system is that our 3D

building models created can be utilized for architectural design,

i.e., BIM, while 3D models created by procedural modeling are

not solid models but surface models which are to be converted

into geometric primitives (CSG) when they are used for

construction design. In this paper, the straight skeleton

computation optimized for automatic generation of 3D roof

model is proposed by adding ‘Line segment’ event besides the

conventional events, and ‘monotone polygon nodes sorting’ by

which self-intersecting monotone polygons are not formed.

Acknowledgements

This work was funded by JSPS KAKENHI; Grant-in-Aid for Scientific

Research (C) Grant Numbers 18K04523, 16K01045.

References

1） Sugihara K., Hayashi Y.: 2008, Automatic Generation of 3-D

Building Models with Multiple Roofs, Journal of Tsinghua

Science & Technology, 13, 368-374.

2） Sugihara, K. and Kikata, J.: 2013, Automatic Generation of 3D

Building Models from Complicated Building Polygons, Journal

of Computing in Civil Engineering, ASCE (American Society of

Civil Engineers), 27(5), 476–488.

3） Sugihara K.: 2012, Straight Skeleton for Automatic Generation of

3-D Building Models with General Shaped Roofs,

Communication Proc., WSCG'2013, 175–183.

4） O. Aichholzer, F. Aurenhammer ,and D. Alberts, B. Gärtner: 1995,

A novel type of skeleton for polygons, Journal of Universal

Computer Science, 1 (12), 752–761.

5） Eppstein David, Erickson Jeff: 1999, Raising roofs, crashing

cycles, and playing pool: applications of a data structure for

finding pairwise interactions, Discrete and Computational

Geometry, 22 (4): 569–592.

6） Yoav I. H. Parish, and Pascal Müller: 2001, Procedural modeling

of cities, Proceedings of ACM SIGGRAPH 2001, ACM Press, E.

Fiume, Ed., New York, 301–308.

7） Pascal Mueller, Peter Wonka, Simon Haegler, Andreas Ulmer, Luc

Van Gool.: 2006, Procedural modeling of buildings, ACM

Transactions on Graphics 25, 3, 614–623.

8） Helda M., Palfradera P.: 2017, Straight Skeletons with Additive

and Multiplicative Weights and Their Application to the

Algorithmic Generation of Roofs and Terrains, Computer-Aided

Design, Elsevier B.V., 92, 33-41.

9） Tom Kelly, Peter Wonka: 2011, Interactive Architectural Modeling

with Procedural Extrusions, ACM Transactions on Graphics

(TOG), 30 (2), 24-41.

10） Nianjuan, Jiang, Ping, Tan, and Loong-Fah, Cheong: 2009,

Symmetric architecture modeling with a single image, ACM

Transactions on Graphics (TOG), 28(5)

－201－論文 R37

