
   

Straight Skeleton Computation Optimized  

for Automatic Generation of 3D Roof Model 
 

○ Kenichi Sugihara*1, Zhenjiang Shen*2 

 

*1 Professor, Faculty of Information Media, Gifu Kyoritsu University 

*2 Professor, Faculty of Geosciences and civil Engineering, Institute of Science and Engineering, Kanazawa University 

 

Summary: 3D building models with roofs are important in several fields, such as urban planning and BIM (Building 

Information Model). However, enormous time and labor are required to create these 3D models. In order to automate laborious 

steps, a GIS and CG integrated system has been proposed for the automatic generation of 3D building models, based on building 

polygons (building footprints) on digital maps. The generation is implemented through straight skeleton computation, in which 

three events (‘Edge’ and ‘Split’, ‘Vertex’ events) were proposed. In the computation process, usually three edges propagate i nto a 

node. Often it causes an acute angle shape that is not appropriate for  roof boards. To avoid the inappropriate shape, in this paper, 

methodologies are proposed for adding ‘Line segment’ events besides the conventional events, and for monotone polygon nodes 

sorting. 
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1. Introduction  

3D town models, as shown in Figure 1 right, are important in 

urban planning and architectural design, e.g., BIM. However, 

enormous time and labour has to be consumed to create these 3D 

models, using 3D modeling software such as 3ds Max or 

SketchUp. In order to automate the laborious steps, a GIS 

(Geographic Information System) and CG integrated system has 

been proposed for automatically generating 3D building models, 

based on building polygons (building footprints) on a digital map 

shown in Figure 1 left 1)2)3). In the digital map, not all building 

polygons are orthogonal. In either orthogonal or non-orthogonal 

polygons, methodologies were proposed for automatically 

generating 3D building models with general shaped roofs by the 

straight skeleton defined by a continuous shrinking process 

proposed by Aichholzer et al.4). In their proposal, two events 

(‘Edge’ and ‘Split’ events) will occur during shrinking process. 

Besides two events, Eppstein et al. 5) suggested a ‘Vertex’ event 

in which two or more reflex vertices reach the same point 

simultaneously. A reflex vertex is a vertex whose internal angle 

is greater than 180 degrees. However, some roofs are not created 

by these three events proposed. In our paper 3), the methodology 

was proposed for constructing roof models by assuming ‘the 

Third event’ in which a reflex vertex runs into the edge, but the 

other split polygon is collapsed into a node (an Edge event 

happens in the Split event at the same time). 

Our contribution lies in a new methodology for adding a 

‘Line segment’ event by which the inappropriate roof board 
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shape can be avoided. In the straight skeleton computation, the 

shrinking process continues if split polygons have non-zero area. 

The shrinking process ends when split polygons fall into 

‘Vertex’ or ‘Line segment’ since they have no area. 

Consequently, a ‘Line segment’ can be a resulting shape of 

shrinking procedure, and we classify a ‘Line segment’ event in 

which two line segments collapse into one line segment.  

Usually three edges propagate into a node. Often it causes an 

acute angle shape that is not appropriate for roof boards shown 

in Figure 3(d). To avoid the inappropriate shape, a ‘Line 

segment’ event is proposed. We also propose ‘monotone polygon 

nodes sorting’ by which not self-intersecting monotone polygons 

are formed, where ‘monotone polygons’ are the areas divided by 

a straight skeleton, as shown in Figure 2(c). 

 

2. Related Work  

Since 3D building models are utilized in several fields, various 

types of technologies, ranging from computer vision, computer 

graphics, photogrammetry, and remote sensing, have been 

proposed and developed for creating 3D building models. 

Procedural modeling is an effective technique to create 3D 

models from sets of rules such as L-systems, fractals, and 

generative modeling language 6). Mueller et al.7) have created an 

archaeological site of Pompeii by using a shape grammar. They 

import data from a GIS database and try to classify imported 

mass models as basic shapes in their shape vocabulary. If this is 

not possible, they use a general extruded footprint together with 

a general roof obtained by the straight skeleton computation 

defined by a continuous shrinking process 4).  

As a new generalization of straight skeletons, Helda et al.8) 

introduce additively-weighted straight skeletons. An 

additively-weighted straight skeleton is the result of a 

wavefront-propagation process where wavefront edges do not 

necessarily start to move at the begin of the propagation, 

resulting in an automated generation of roofs in which the 

individual facets have different inclinations and start at different 

heights. 

By using the straight skeleton, Kelly et al.9) present a user 

interface for the exterior of architectural models to interactively 

specify procedural extrusions, a sweep plane algorithm to 

compute a two-manifold architectural surface. 

  By the interactive modeling, 3D building models with 

plausible detailed façade can be achieved. However, the 

limitation of these modeling is the large amount of user 

interaction involved10), and the models created are ‘surface 

models’ by sweeping or extruding, revolving 2D primitive 

geometries. When creating 3D building models for architectural 

design and BIM, 3D building models should be made up of 

solid geometries primitives which will be parts of the building, 

created through Boolean operation. While the ‘surface models’ 

trace the surface of the parts of 3D building model, the 3D 

models used for architectural design should consist of building 

component created by CSG (Constructive Solid Geometry). 

Thus, the GIS and CG integrated system is proposed for 

automatically generating 3D building models by CSG. 

 

3. Pipeline of Automatic Generation  

As the pipeline of automatic generation is shown in Figure 1, the 

source of 3D models is a digital map that contains building 

polygons linked with attributes data, such as the number of 

stories and the type of roof, shown in Figure 1 left up. The maps 

are then preprocessed at the GIS module, and the CG module 

finally generates the 3D building model. 

The preprocessing at the GIS module includes the 

procedures as follows: (1) Calculate the minimum receding 

distance for an Edge event (including a Third and Line segment 

event). Until the Edge event occurs, check if a Split event 

happens by starting continuous shrinking process. (2) Start 

continuous shrinking process in which edges of the polygon 

move inward, parallel to themselves at a constant speed shown in 

Figure 2(a)&2(b). (3) Detect any event such as a Split, Edge or 

Line segment event during shrinking process, and formation of 

nodes by these events. The position of the node is calculated by 

the intersection of angular bisectors. (4) Inherit and store three or 

more ‘original edge ID’ (e.g. edgN in Figure 2(a)) linked to the 

node during the shrinking process in which the topology of the 

polygon will change. In shrinking process, Figure 2(b) shows 

edg2 firstly disappears into Node1, and two edges (edg8 & 9) 

secondly result in Node2. Since at least three original edges 

sweep into the node, edg1,2 & 3 propagation result in Node1, 

and edg4,5 & 10 propagation result in Node3 (by Split event). (5) 

Every (original) edge will inquire ‘each node’ having three or 

more ID to find out which node has the same ‘original edge ID’. 

If so, then nodes of the same ID are collected and the set of 

nodes are sorted according to the edge vector to form ‘monotone 

polygon’ and the straight skeleton. (6) Calculate the length, 

width, center position and inclination of the bounding rectangles 

for ‘monotone polygons’. (7) Export the coordinates of 

polygons’ vertices, ‘monotone polygons’ information, and 

attributes of buildings.  

As shown in Figure 1, the CG module receives the 

pre-processed data that the GIS module exports, generating 3D 

building models. In GIS module, the system measures the length 

and inclination of the bounding rectangle for the monotone 
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polygon that will be a roof board. The CG module generates a 

bounding box of the length and width, measured in GIS module. 

The monotone polygons will be converted into primitives, i.e., 

thin boxes by Boolean operation between the extrusion of the 

monotone polygon and the box primitive.  

In case of modeling a building with roofs, the CG module 

follows these steps: (1) Generate primitives of appropriate size, 

such as boxes, prisms or polyhedra that will form the various 

parts of the house. (2) Boolean operations applied to these 

primitives to form the shapes of parts of the house, for examples, 

making holes in a building body for doors and windows, making 

trapezoidal roof boards for a hipped roof and a temple roof. (3) 

Rotate parts of the house according to the inclination of the 

partitioned rectangle. (4) Place parts of the house. (5) Texture 

mapping onto these parts according to the attribute received. (6) 

Copy the 2nd floor to form the 3rd floor or more in case of 

building higher than 3 stories. 

4. Straight Skeleton Computation 

Aichholzer et al. 4) introduced the straight skeleton defined as 

the union of the pieces of angular bisectors traced out by 

polygon vertices during a continuous shrinking process in 

which edges of the polygon move inward, parallel to themselves 

at a constant speed. The straight skeleton is applied to 

constructing general shaped roofs based on any simple building 

polygon, regardless of their being rectilinear or not.  

As shrinking process shown in Figure 2, each vertex of the 

polygon moves along the angular bisector of its incident edges. 

This situation continues until the boundary change topologically. 

According to Aichholzer et al. 4), there are two possible types of 

changes: 

(1) Edge event: An edge shrinks to zero, making its neighboring 

edges adjacent now. 

(2) Split event: An edge is split, i.e., a reflex vertex runs into 

this edge, thus splitting the whole polygon. New adjacencies 

occur between the split edge and each of the two edges incident 

to the reflex vertex.  

If the sum of the internal angles of two vertices incident to 

an edge is more than 360 degrees, then the length of the edge 

increases, otherwise the edge will be shrunk to a point (node). 

Shrinking procedure is uniquely determined by the distance dshri 

between the two edges of before & after shrinking procedure. 

The distance e_dshri is the dshri when an edge event happens in 

the shrinking process. e_dshri for the edge (edi) is calculated as 

follows: 

e_𝐝shri =
Ｌ

i
 cot 0.5 ∗ θi + cot 0.5 ∗ θi+1  

  

 

where Li is the length of edi, and θi & θi+1 are internal angles of 

vertices incident to edi.  

When 0.5*θi＋0.5*θi+1＜180 degrees, i.e., the sum of the 

internal angles of two vertices incident to an edge is less than 

360 degrees, an Edge event may happen unless the edge is 

intersected by an angular bisector from a reflex vertex and a 

Split event happens. 

 

4.1. HOW STRAIGHT SKELETON IS FORMED 

How a straight skeleton and monotone polygons are formed is 

as follows.  

(1) One simple polygon (P) is given such as shown in Figure 

2(a). If there is any reflex vertex in the P, then it can be divided 

into two or more polygons.  

(2) The system calculates e_dshri (receding distance for an Edge 

event, shown in (1)) for all edges and finds the shortest of them. 

Then, the system checks if a Split event occurs by increasing 

dshri by (e_dshri /n_step). In this way, the shrinking process may 

proceed until dshri reaches the shortest e_dshri calculated.  

(3) During shrinking until dshri reaches the shortest e_dshri, the 

a) b) c) d) 

Figure 2. Shrinking process and a straight skeleton, a roof model generated. a) Input polygon (bold) start continuous shrinking process 

in which edges of the polygon move inward, parallel to themselves at a constant speed. b) Shrinking polygons (blue) by edge or no 

event, and red one by a split event. c) The straight skeleton (blue) and monotone polygons. d) A roof model automatically generated: 

each roof board is based on an ‘monotone polygon’. 
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system checks if a ‘checking angular bisector’ from a reflex 

vertex intersects another edge of the polygon or not. If an edge 

is found intersected, then the system calculates the node 

position by the Split event. The position of the node is 

calculated by the intersection of two angular bisectors: one from 

the reflex vertex and the other between the intersected edge and 

one of two edges incident to the reflex vertex. However, edges 

may be intersected by several ‘checking angular bisectors’ from 

several reflex vertices. Among the several reflex vertices, the 

reflex vertex that gives the shortest dshri will be selected for 

calculating the node position. 

(4) In the process of (2), a Split event may happen and the 

polygon will be divided into some polygons: Ps.  

In this ‘Split event checking’ process, all divided polygons are 

checked if they can be divided more. As long as there are some 

Ps that can be divided, ‘Split event checking’ routine will 

continue. After that, the system concentrates on the Edge event 

procedure.  

(5) In this stage, since the number of polygons divided does not 

increase by the Split event, the system can focus on the Edge 

event including Third and Line segment event procedures. If the 

polygon divided has only three vertices, then the polygon 

(triangle) collapses to a node; this is the final stage for the 

polygon divided. 

(6) While the Edge events are being executed, the topology of 

the polygon will change. If the change happens, then the system 

re-implement the process from (2) to (5) for the polygon whose 

topology has changed. At that moment, the system recalculates 

the length of each edge and the internal angle of each vertex in 

order to find the shortest dshri for next events. This 

re-implementation process continues until all polygons changed 

collapse to a node or a line segment. 

4.2. NODE STRUCTURE 

The generated node is associated with the edges of an original 

polygon P (original edge: o-edge) which are identified by 

‘o-edge ID’, e.g. edg1 & edg2 in Figure 2(a), since at least three 

o-edges (original edges) sweep to form a node. Therefore, at 

each event when the node is generated, at least three o-edges are 

linked to the node. This means more than three o-edges ID are 

stored in the node with an appropriate structure.  

In our system, a node has the following properties; (a) ‘Node 

Type’ (how the node is risen; by an Edge event or a Split event, 

Vertex event, Multiple Edge event and so on) (b) ‘Number of 

forming edges’ (usually three edges sweep to form a node, but 

more than three edges sweep in case of Multiple Edge event) (c) 

‘o-edge ID preceding the vanishing edge’ (by an Edge event) or 

‘o-edge ID of the edge incident to the reflex vertex’ (by a Split 

event) (d) ‘o-edge ID following the vanishing edge’ (by an Edge 

event) or ‘o-edge ID of the other edge incident to the reflex 

vertex’ (by a Split event) (e) ‘o-edge ID of at least one vanishing 

edge’ (by an Edge event) or ‘o-edge ID of a split edge’ (by a 

Split event) 

Since three edges usually sweep into the node, three 

‘o-edge IDs’ are stored in the property of a node. These IDs are 

used for forming a monotone polygon by collecting the nodes 

which has the same ‘o-edge ID’ as each own o-edge ID.  

In special cases, four or more edges collapse into a node, 

such as Node2 in Figure 2 and Node2 & Node5 in Figure 3(e). 

In extreme cases, such as a hexagon or a regular polygon, a 

star-shaped polygon collapses to a node, four or more o-edges 

will sweep into a node. Therefore, a node needs ‘Number of 

forming edges’ property. This is the case of a multiple Edge 

event or the case Eppstein et al.5) defined as a ‘degenerate case’ 

in which the straight skeleton can have vertices of degree higher 
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than three, introduced by simultaneous events at the same 

location. However, in single or double precision floating point 

calculation for the position of the node, it is quite rare for four 

or more vertices to reach exactly the same point simultaneously.  

To rectify monotone polygons to be appropriate shape for roof 

boards, in our system, if multiple edges collapse into a certain 

area considered as a point for a node, then they are considered 

to converge into the same point and the node is formed. 

 

4.3 LINE SEGMENT EVENT 

Since three edges usually sweep into a node, very often this 

causes a quite acute angle shape that is not appropriate for roof 

board shape shown in Figure 3. In Figure 3(e), pt5 propagates to 

join pt2 and four edges (edg1,2,4,5) propagate into Node2, 

whereas, in Figure 3(d), pt5 does not join pt2 and goes off 

Node2, and three edges (edg4,5,11) result in Node4 with acute 

angle shape. 

This acute angle shape is also found at the figure of 

Eppstein et al.5), which uses perturbation techniques, replacing 

the high-degree node with several nodes of degree three, 

connected by zero-length edge. In our system, using the 

technique completely opposite to Eppstein’s perturbation, a 

‘Line segment’ event is proposed where edges are overlapped 

and collapse into a line segment instead of a vertex to avoid the 

acute angle shape. This so-called snapping function is done by 

setting up a certain range for possible ‘Line segment’ events, in 

which edges converge into a certain area considered as a line 

segment, then they are regarded as converging into the same 

line segment. 

By a ‘Line segment’ event, two parallel edges converge 

into one edge (line segment), and the convergent line segment is 

detached from a next shrinking body polygon. But if the 

detached line segment leaves no vertex for next shrinking 

process, then the line segment is disconnected from a body 

skeleton. Therefore, the detached line segment leaves at least 

one vertex for next shrinking process. Examples are shown in 

the line segment between Node2 and Node5 in Figure 4(c) and 

Figure 5(b); one node whose interior angle is flat will remain 

for the next shrinking process so as to create the border of 

monotone polygons. For example, in Figure 4(c) & Figure 5(b), 

four edges (edg11,12,14,15) propagate into Node2, and two 

overlapping edges (edg12,14) turn into the line segment 

incident to Node2 & nearby Node after edg13 disappeared.  

If a configurable range is quite narrow, then edge propagation 

will be extended, ending in Node5 as shown in Figure 5(a); 

three edges (edg12,14,15) result in Node2, and three edges 

(edg1,11,15) result in Node5 whose inner angle is quite acute, 

which is improper for roof board shape. 

 

4.4 MONOTONE POLYGON NODES SORTING 

According to Aichholzer et al.4), the area divided by a straight 

skeleton will be a ‘monotone polygon’. To get the monotone 

polygons, the set of the nodes belonging to each original edge 

will be sorted according to the ‘coordinate value of node vector 

projections’ onto the original edge vector parallel to each 

original edge. These nodes are coplanar and will form roof 

boards for a 3D building model. However, for some polygon, 

this methodology does not work, resulting in self-intersecting 

polygons. Figure 5(c) shows monotone polygons for edg13 are 

self-intersecting. This is because the edge (connecting Node3 & 

Node4) of the monotone polygon is perpendicular to the original 

edge (edg13) of the polygon, and the nodes are connected in the 

order of ‘node vector projection’. The self-intersections are also 

found at edg29 in Figure 5(c) and edg21 in Figure 5(b). 

To avoid self-intersection, the azimuth angle of the nodes 

belonging to the same monotone polygon is proposed, where 
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the azimuth is the angle between each original edge vector and a 

node vector. The first node in the monotone polygon vertices 

numbering is selected from the node with least azimuth, and the 

last node is the node with greatest azimuth, since the nodes near 

the both ends on an original edge may wrap around both ends 

for some monotone polygons, and wrapping around nodes may 

not have simply increasing ‘coordinate value’. For example, in 

Figure 5(c), the edge (connecting Node1 & Node2) of the 

monotone polygon is perpendicular to the original edge (edg29), 

and Node1 & Node2 have the same ‘coordinate value’, resulting 

in self-intersection at nodes sorting. Thus, the nodes at ends are 

sorted by the azimuth angles. Then, the sorting of the nodes is 

found successful in a complicated shape polygon such as the 

ones in Figure 1 and Figure 4(c).  

 

5. Conclusion 

Our system does not always aim at creating current 3D town 

models (e.g. 3d models in Google Earth) but generating hipped 

roof building models. The roof models created by the straight 

skeleton computation are limited to hipped roofs, since short 

edges are disappearing when shrinking process proceeds and 

long edges are remain as the ridges of the roof shown in Figure 

2 & 4. When creating hipped roof models, our system instantly 

generates them from building polygons.  

The advantage of our generation system is that our 3D 

building models created can be utilized for architectural design, 

i.e., BIM, while 3D models created by procedural modeling are 

not solid models but surface models which are to be converted 

into geometric primitives (CSG) when they are used for 

construction design. In this paper, the straight skeleton 

computation optimized for automatic generation of 3D roof 

model is proposed by adding ‘Line segment’ event besides the 

conventional events, and ‘monotone polygon nodes sorting’ by 

which self-intersecting monotone polygons are not formed.  
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