Development of a Telepresence System for Sharing 3D Physical Objects Sharing real-time point clouds between multi users by using Mixed Reality

Daichi Ishikawa^{*1}, Tomohiro Fukuda^{*2} and Nobuyoshi Yabuki^{*3}

*1 Graduate Student, Div. of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University
*2 Assoc. Prof., Div. of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Ph.D.

*3 Prof., Div. of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Ph.D.

Keywords: Telepresence; sharing 3D physical objects; Mixed Reality (MR); real-time point clouds; interactive.

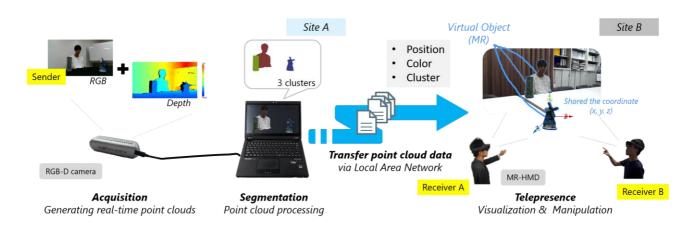
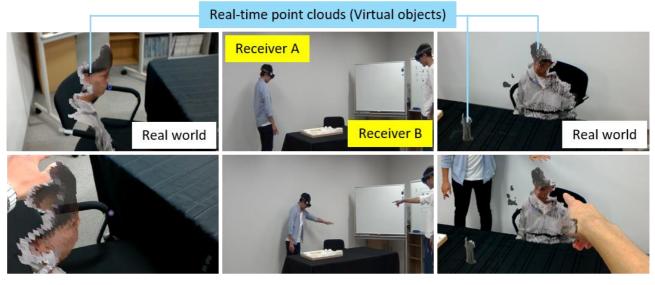


Figure 1. The proposed system configuration

1. Introduction

Consensus building between stakeholders is necessary to enhance the quality of the decision-making. Telepresence allows one to feel as though other users in remote areas were presently at the same location¹).

Virtual Reality (VR) and Mixed Reality (MR) can provide immersive experiences with people wearing VR/MR-Head Mounted Display (HMD). Kantonen *et al.* proposed an MR telepresence system, Augmented Collaboration in Mixed Environment (ACME) that can share 3D virtual objects made by Building Information Modeling (BIM) between stakeholders²⁾. However, this system requires 3D virtual models to be made in advance, making it difficult to share 3D physical objects whose shapes continuously change in real-time.


Real-time point clouds enable modeling of 3D physical objects in real-time by using an RGB-D camera. In our previous research, Ishikawa *et al.* proposed an immersive telepresence system to improve operability of real-time point clouds in order to share and manipulate the 3D physical objects more easily in remote areas³⁾. This system only allows one-to-one communication: a sender and a receiver.

2. System configuration

Figure 1 shows the proposed system configuration. At first, an RGB-D camera simultaneously captures the RGB images and depth data in real-time to generate real-time point clouds. After point cloud processing for point cloud segmentation, real-time point clouds are classified into individual clusters by the Euclidean Cluster Extraction method⁴).

Point cloud data with XYZ coordinates, RGB color values, and cluster information of real-time point clouds are transmitted to MR-HMD devices in a remote area connected via the same Local Area Network (LAN). Receivers wearing MR-HMD is able to observe, in the real world, 3D virtual objects generated by point cloud data through MR in real-time. Connecting each MR-HMD with a server PC, the coordinates of 3D virtual objects among MR-HMDs are shared.

The research presented in this paper aims to develop a telepresence system adapted into multi users communication: a sender and some receivers. This is accomplished by sharing the coordinates of 3D virtual objects between MR-HMDs the receivers wearing.

(a) The receiver A's view through HoloLens (b) The state of receiver A and the receiver B (c) The receiver B's view through HoloLens

Figure 2. Sharing the coordinates of 3D virtual objects

3. Experiment and Result

In this experiment, two receivers in the same room realized for sharing the coordinate of 3D virtual objects generated using realtime point cloud data acquired from a remote area.

In Figure 6a and 6c, while the receiver A touched 3D virtual objects, the receiver B could observe this situation. From this result, we confirmed that the coordinates of 3D virtual objects were synchronized between the receiver A and the receiver B

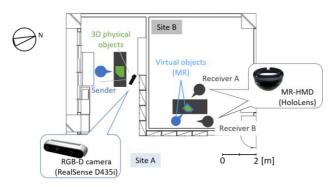
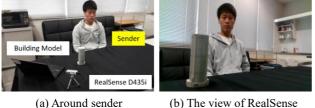



Figure 3. Floor plan showing two sites

(a) Around sender (b) The view of RealSense D435i Figure 3. The state of the sender

4. Limitations

In the proposed system, some limitations still exist.

The first is the usage environment. In order to use the system, an RGB camera and MR-HMDs are necessary under the same LAN environment.

The second is the light environment. An RGB-D camera is weak to light reflection due to using laser to capture depth data. To run this system better, we prepare a room not too bright.

References

- Buxton, W. (1992). Telepresence: Integrating shared task and person spaces, In Proceedings of graphics interface, Vol. 92, No. 1992, pp. 123-129
- Kantonen, T., Woodward, C., and Katz, N. (2010) Mixed reality in virtual world teleconferencing, In Virtual Reality Conference (VR), 2010 IEEE, pp. 179-182..
- 3) Ishikawa, D., Fukuda, T., and Yabuki, N. (2019). Development of a Telepresence System for Sharing 3D Physical Objects Using Real-time Point Clouds. AIJ HOKURIKU 2019, Summaries of Technical Papers of Annual Meeting, Information Systems Technology, 13-14
- Rusu, R. B. (2010). Semantic 3d object maps for everyday manipulation in human living environments. KI-Künstliche Intelligenz, 24(4), 345-348.