

 Discovering Design Change Pattern Through Versioning

○ Verina Cristie*1, Jason Lim*2, and Sam C. Joyce*3

*1 PhD Candidate, Architecture and Sustainable Design, Singapore University of Technology and Design, M. Sc.

*2 Adjunct Assistant Professor,, Architecture and Sustainable Design, Singapore University of Technology and Design, Dr.

*3 Assistant Professor, Architecture and Sustainable Design, Singapore University of Technology and Design, Eng. D.

Summary: Despite the plenty of data collected through collaborative design exercises in pedagogy settings, very few of these data

were utilized for further studies. This occurrence is in contrast with the software development settings where software repositories

are often mined to find insights on programmer’s software building pattern. In this work, we implemented exploratory time-series

data analysis through design versions data collected from a parametric design workshop of 44 students in groups of five. A

framework to discover design change pattern through in-between change count was developed. The result revealed three different

change patterns the group exhibit: premature fixation, constant change, and last-minute work. Finally, it is found that constant

change pattern corresponds to higher instructor-given final design computation score, as students were encouraged to explore

sufficient design ideas in the workshop.

Keywords: Classroom Cloud Collaborative Tool; Parametric Design; Data Analysis; Design Exploration; Version Control.

1. Introduction

Expert designers’ ideation processes are often associated with

breadth-first exploration as opposed to novice designer’ depth-

first exploration(1,2). While not a definite formula for better design

outcomes, it is often seen as a good design strategy: to explore

more design ideas in the early stage and not committing too early

to one design idea, with ideas converging in the later stage of

design. To evaluate design progression in a pedagogy setting,

instructors would often require students to submit their ‘learning

journals’(3), or ‘process book’(4) where the development and

exploration of ideas are contained.

The idea of evaluating design progression has turned to

exploring digital evaluation with the birth of the web in the 90s.

Design studio turned to virtual design studio(5), and learning

journal became the design progression data (design versions)

recorded online. Phase(x)(6) and OpenD(7) exemplified this by

allowing students to upload their designs (in image and text

format) as they progressed in their designs. In such virtual

exercise, learning and collaboration were often the focus.

Students were to download and modify each other’s designs in

the spirit of collective authorship. In a more recent example in

parametric design, an interactive design gallery was developed to

facilitate saving and retrieving of design alternatives

exploration(8).

In this paper, we will focus on recording and evaluating the

design process in parametric design. Parametric design is a way

of representing design intent by establishing the relationships of

its design elements(9). Due to this being on graphic interfaces

parametric modelling is often called visual programming, a

counter to software design’s predominantly text based

programming. Jabi(10) further iterated that software design

concepts such as versioning and iteration are fundamental themes

in parametric design. It is our aim in this work to evaluate the

parametric design process through the design versions captured,

similar to how code versions were evaluated to understand

programmer’s software building pattern.

How the design progression data could be recorded online

and how it has the potential to be evaluated similarly to code

repository evaluation had been introduced in this first section.

The rest of this paper continues as follows: in the second section,

we review related works in design process evaluation through

data analysis. Our case study and its result will be described in

section three. Design change analysis framework and its

implementation in the collected data will be discussed in section

four. Section five deals with the development of design entropy

framework and further discussion of the various measures of the

design process. Finally, in the concluding section, we summarize

our findings and discuss directions for future works.

2. Related Works & Scope

To understand the design process, design activity data had been

used in numerous design protocol studies(11,12). Typically,

designers were observed directly or recorded while designing and

they were asked to think aloud so that their cognitive process

could be matched with their design action. We differentiated this

study by using design progression data instead of design activity

data. Design progression data contains design artefacts such as

sketch or model at different points of time throughout the design

－490－

日本建築学会情報システム技術委員会

第43回情報･システム･利用･技術シンポジウム論文集，490-495，2020年12月，オンライン

Proceedings of the 43rd Symposium on Computer Technology of Information，

Systems and Applications，AIJ，490-495，Dec.，2020，Online

process.

A parametric design’s artefacts are a parametric model, its

input parameters, and a resultant geometric output. To measure

change and variance between two or more models, Brown &

Mueller(13) have developed a diversity metric; i.e: how diverse

geometric outputs from a parametric model is. Davis(14),

developed complexity and flexibility metric; i.e: how easily

understood and modified a parametric model is. Both metrics,

however, are static measures of ‘fixed’ models; whereas the

creation of a design including a parametric model involves

changes and edits over time. To understand this design process

better, a time-dependent analysis is critically needed. Prior work

by authors(15,16,17) has demonstrated how this time-dependent

design progression data can be captured. This paper aims to

investigate and develop frameworks to understand this data better.

Specifically, our research questions are:

• How do we detect and quantify the change in the

collected time-series parametric design data?

• Can any pattern be found from the quantified change?

• What does the quantified change tell about the design’s

progression, and how does it relate to the final score?

We seek to answer these prescribed questions firstly by

capturing the design progression data to then use them to develop

the analysis framework, which will be described in section 4. In

the next part, we will describe our data collection study case.

3. Design Workshop & Results

3.1. EXPERIMENT SETTINGS

Design progression data was collected in a 5-full-day workshop

of undergraduate architectural computational design class. Sixty-

four students were enrolled in the class, divided into 13 groups.

Each group was tasked to design external façade based on the

given design scenario, which was introduced on the first day. The

final façade had to be aesthetically pleasing and at the same time

adhere to site specific conditions such as sun direction and

outside views. On the second day, a base parametric model file

containing scripts to generate, modify, and evaluate façade

surface was given. Students were to explore this model

individually before discussing and continuing to develop the

model as a group on the third though to the fifth day of the

workshop. The GHShot Grasshopper plugin versioning tool(15,16),

was used to record student’s design progression throughout the

workshop. At any point in the design development, students

could send their current parametric model to cloud platform. By

default, every model sent would be a continuation of its previous

model. However, students could also specify if the current model

sent was a variation/design alternative of the previous model sent.

Establishing this continuation-or-variation was important to

understand the overall design development (history) tree. At the

end of the workshop, each group was to submit a design journal

to summarize and reflect on their design journey. In addition, they

would also need to explain important milestones in their design.

3.2. RESULTS

Out of the 13 groups, 9 groups were selected for further analysis

(Figure 1). Four groups were not selected because there were not

sufficient (less than four) parametric model versions sent to

analyze their progression.

Figure 1. Selected Groups' Design Progression. Green, red, and

yellow line represents the number of components added, deleted,

and changed between versions.

－491－論文 R115

4. Design Change Analysis

To analyze design progression from versions collected, firstly the

design change must be detected. Change in each version is

compared against its previous version. Once detected, the

number of changed elements are counted from the start to the end

of the design to see if we could gain some insight from the

parametric model change activity.

4.1. CHANGE DETECTION AND COUNT

Each version contains its parametric model definition and

geometrical output at the time it is sent to the server. In

Grasshopper, designers interact with their parametric model by

the use of visual components representing encapusulated

computation typically geometry processes that take multiple

inputs and outputs, these are connected by wires representing

where the data flows and how indexing works for the model

which is effectively a computer program. This parametric model

definition can be saved in text-based eXtensible Markup

Language (XML) format. With XML, each component in

Grasshopper is represented in a ‘chunk’ of text, and each chunk

contains information of the component’s ID, type, attributes, and

the ID of other components that are connected to it.

4.1.1 Change in Parametric Model Components

The XML text were then parsed for a list of components and their

ID and attributes. IDs appearing only in the newer/subsequent

design version were detected as newly added components, while

IDs appearing only in the older version were detected as deleted

components. There were also IDs appearing in both versions. If

their attributes were different in the newer and older versions,

these were detected as changed components. Otherwise, they

were counted as the same components in both versions.

Parametric change score of a design version was formulated

as the sum of the changed components count, deleted

components count, and newly added components count. We did

not use change percentage against the overall number of

components as even one component change could affect the

parametric model entirely. By using change count, higher change

score could be expected when new ideas were implemented

(many components were being added, and the old ones were

deleted), as compared to lower change score when typically only

input parameters of the model were changed.

4.1.2 Change in Code Based Components

In the studied workshop, students were encouraged to use

scripting as part of the design exploration. In Grasshopper, this is

possible by the use of GhPython Script component allowing for

custom logic in a component. To further investigate the code

based changes students did, we used a popular text comparison

algorithm called Diff(18). Diff library used in our analysis is taken

from Google’s Diff Match Patch [1]. It allowed us to know the

total lines of text in the script that were same, new, or deleted. If

a line of code was changed, it was counted as deleting the old line

and adding a new line. Code change score was formulated as the

sum of deleted lines count and newly added lines count.

4.2. CHANGE COUNT SUMMARY

Both change count in both parametric model components and

code-based components were summed up to reflect the overall

change in a particular design version. In Figure 2, parametric

change count (in blue), code change count (in orange), and total

change count (in green) for the different groups were visualized.

Plotting changes in line allowed us to see different design

iterations students went through during the workshop. When

there was major design development or new ideas explored, the

number of changes often spiked. The y-axes of the graphs were

not having the same upper limit, as each group produces different

parametric models. For example, in G10’s graph, we saw a

pattern of changes and milestone marking (vertical line)

repeatedly.

Figure 2. Change count plot across groups. Design timeline is

represented from 0 to 1, 0 being the first and 1 being the last

design version sent.

Parametric and code modification count also often spiked at

the same time, signifying that both coding and parametric

changes were employed to achieve student’s desired geometric

－492－論文 R115

outcome. Overall, we observed three distinct strategies for

geometric manipulation from the graph:

• Parametric component modification only: a common

occurrence found across the groups, where we saw yellow

line fall often flat to 0 counts. This strategy is exemplified

most in in group G4 and G12.

• Both parametric and code modification, with

dominant coding strategy: this could be found when a

version’s code change count is bigger than its parametric

change count. An example could be found at G2’s 4th

version.

• Both parametric and code modification, with

dominant parametric strategy: this occured in many of

the design versions; in general, students did less code

modification than parametric model modification

throughout the design process (orange line is typically

located below the blue line). A clear example could be seen

throughout G8’s design versions.

4.3 DESIGN CHANGE PATTERN

Given the design timeline and its resulting change count, we

came up with a cumulative design change graph to compare the

journey of changes each group went through. We were interested

to find further:

• Which group did more changes as compared to the rest?

How did each group’s change performance when

compared with the rest?

• How did these changes happen? Were there more changes

in the beginning or at the end?

The highest cumulative change count came from G9 with

over more than 1500 change counts. G1, G11, and G10 has more

than 500 change counts. G8 has around 500 changes, and the rest

of the group has less than 300 changes. To understand if more

works are done in the start, middle, or end of design timeline, the

change counts were normalized from 0 to 1 (see Fig. 3). Further,

it could also be observed how different groups have different line

progression ‘smoothness’. G11, G1, and G9 have sudden jumps

in their progression, especially towards the end of the design

timeline. This means more works were done at the end.

We identified three design change patterns from the

normalized cumulative change count (see Fig. 4):

• Premature Fixation (PF): more changes are done at the

beginning of the design and there aren’t much design

developments after; such was shown by G2.

• Last-minute work (LM): changes, or work to develop

design seems slow as design progress and suddenly there

is a drastic change at the end of the design timeline; such

was shown by G1, G9, and G11.

• Constant change (CC): continuous and consistent change

throughout the design timeline; such was shown by the rest

of the groups.

Figure 3. Groups’ Normalized Change Count

Figure 4. Design Change Activity Pattern

4.4 CONNECTION TO THE FINAL DESIGN COMPUTATION

SCORE

At the end of the workshop, two score were given to each group,

final design aesthetic score and final design computation score.

For the purpose of the following discussion, we only take account

of the design computation score, as aesthetic score is subjective

and might not correspond to the parametric design process the

students went through. The criteria for the computation score was

sufficient design ideas and iterations were explored, especially as

performed using the Grasshopper parametric software.

As summarized in Table 1 below, those with final instructor’s

given computation design score 4 and above are often found to

have Constant Change pattern (CC), except G12. G8, which has

the highest computation score (4.5), has rather a smooth linear

－493－論文 R115

progression with higher gradient. It can be seen evidently in Fig.

1 that G8 had plenty of design ideas explored. G2’s Premature

Fixation (PF) were given 3.5 score. Last-minute work (LM) were

given score 3.5, 3, and 2.5 respectively, swinging towards the

lower spectrum of the scores.

Table 1: Group’s Design Progression Summary

group

total

sender

total

versions

design

pattern

1st

miles

fixati

on

final

score

G1 1 11 LM 3 early 3.5

G2 1 9 PF 2 early 3.5

G4 4 24 CC 6 mid 4

G8 3 16 CC 5 mid 4.5

G9 2 12 LM 10 late 3

G10 1 13 CC 6 mid 4

G11 1 6 LM 3 early 2.5

G12 5 16 CC 6 mid 2.5

G13 4 17 CC 7 mid 4

Thus, well-performing groups in the workshop tended to

have linear constant changes showing consistant and persistant

effort. We speculate that this is partly due to the short duration of

the design workshop (3 days for the group design), that constant

change and iterations were encouraged so that more ideas could

be explored and developed. In (19), it was mentioned that there are

two different approaches good designers typically go through:

either deliberating on a series of alternative solutions followed by

a series of refinement and selection, or single idea with

continuous revolution and evolution. It is important for designers

to continue putting effort in the design process as it will guide the

change direction. Such notion is consistent with Schon’s(20)

reflection in action, where professionals were found to receive

feedback (reflection) to their thinking process as they perform

problem-solving action in their current projects. Merely waiting

for an idea to appear is unlikely to be successful.

The constant change appears to be reflective of the effort

given in exploring the design. In a more conventional design

scenario, we assume a plot where change is highest in the

beginning during the design exploration phase, tapering to lower

during design development, and eventually lowest during design

fine-tuning as design change plateaued at the end (see Fig. 4,

bottom right chart). Cross(2) mentioned that expert designers will

do breadth-first exploration before going to dive into a depth-

based exploration of a particular design. In other words, designs

do diverge first before they converge. Hence, in a longer duration

design development, we expect to see a different type of

cumulative graph.

Lastly, to provide a deeper understanding of the design

process, we also asked each group to specify which design

version were their main design milestones, and which was the

final design. This was visualized using blue (milestones) and red

(final) vertical lines in Fig. 4 above. We identified at which nth

design first milestone occurred and put it on the summary table

under the first milestone order column. Based on this, we

categorized if the design milestone was set (fixed) early, middle,

or late. 1-4 is categorized as early, 5-8 as mid, and above 8 as late.

We found an extreme case in G11 where its milestone was fixed

early and final computation score was low (2.5). Three groups

who set their milestone in the middle also had a rather high final

computation score. Despite this, there isn’t any conclusive

relationship between a group’s milestone fixation and its final

score. Based on the literature, we would suggest having a

milestone not too early, as more design exploration should

typically be done before having a fixed idea.

In section three, we have introduced the design change

framework, and in this section, we further elaborated how the

change frameworks can be elaborated to discover design change

pattern during the design process. Further, the changes were

discussed in relation to the final design score and the design

milestone. This change framework is novel in its implementation

in the parametric design process to the best of our knowledge.

5. Conclusion and Future Work

In this paper, we have demonstrated how captured design

progression data can be analyzed to interpret changes each group

went through in a design workshop. Applying time-series

analysis, a change metric was established, by firstly calculating

change count of a design version against its previous version in

both the parametric model and Python script lines in Grasshopper

XML file. This quantified change count, when normalised,

established each group’s design change pattern, which can be

categorised as premature fixation, constant change, and last-

minute work. When connected to the groups’ final design

computational score, it can be observed that groups with constant

change pattern tend to have a higher design computation score as

compared to thos from last-minute work group. This means that

score can be a proxy of amount of design explorations done by

the groups. On the other flip side of the coin, it also means that

generally the score was given objectively, rewarding groups with

more designs explored with higher score. As a teaching aid, the

versioning tool and the change framework can be combined as a

method to highlight students whose design exploration might be

sub-optimal and needing nudging to explore more designs.

For future experiments, we are aiming for a more accurate

design version timeline. This could be achieved by either

－494－論文 R115

allowing design version timestamp change or enforcing a stricter

rule to immediately sent version after each design exploration.

Such practice will allow a better analysis of how each group

reached the design milestone and differentiating versions that

took longer or shorter time to achieve. In addition, we could also

establish a change rate metric, where change count can be

measured against the time taken to establish a particular design;

and thus could potentially reveal greater depth in designers’

working pattern.

Lastly, other than using change metric as a proxy of design

space explored, we speculate that such automatic change

measurement could probably be beneficial for assisting both

automatic(21) and user-directed parametric design exploration(22).

Change metric could serve as an internal threshold for the

parametric component arrangement or informing designers of the

parametric similarity of their design versions.

Endnotes

1. https://github.com/google/diff-match-patch

References

1) Eastman, C., Newstetter, W.C., and McCracken, M. W.:

2001, Design knowing and learning. Elsevier.

2) Cross, N.: 2004, Expertise in design: an overview. Design Studies,

25(5), 427–441.

3) Roberts, A, and Yoell, H.: 2009, Reflectors, converts and the

disengaged. Journal for Education in the Built Environment 4.2,

74-93.

4) Brunner, L. A.: 2009, A record of the design process. Art and

Design Conference Proceedings: 192-1.

5) Wojtowicz, J.: 1994, Virtual Design Studio. Hongkong University

Press.

6) Hirschberg, U. and Wenz. F.: 2000. Phase (x)—memetic

engineering for architecture. Automation in construction, 9(4),

387-392.

7) Mark M., Bielaczyc K., and Huang, J.: 2005, OpenD: supporting

parallel development of digital designs. User eXperience, 25-es.

8) Mohiuddin, A., Woodbury, R., Narges, A., Mark, C., and Völker,

M.: 2017 A Design Gallery System: Prototype and Evaluation.

2017, ACADIA77, Cambridge, MA, 414- 425

9) Woodbury, R.: 2010, Elements of Parametric Design. Routledge.

10) Jabi, W.: 2013, Parametric design for architecture. Laurence King

Publishing.

11) Suwa, M., Purcell, T., and Gero, J.: 1998, Macroscopic analysis of

design processes based on a scheme for coding designers'

cognitive actions. Design studies, 19(4), 455-483.

12) Yu, R., Gu, N., Ostwald, M., and Gero, J.: 2015, Empirical support

for problem–solution coevolution in a parametric design

environment. AI EDAM, 29(1), 33-44.

13) Brown, N. C. and Mueller, C. T.: 2019, Quantifying diversity in

parametric design: a comparison of possible metrics. AI for

Engineering Design, Analysis and Manufacturing 33(1):40–53.

14) Davis, D.: 2013, “Modelled on Software Engineering: Flexible

Parametric Models in the Practice of Architecture.” PhD

dissertation, RMIT University.

15) Cristie, V. and Joyce, S. C.: 2019, 'GHShot': a collaborative and

distributed visual version control for Grasshopper parametric

programming. 37th eCAADe and 23rd SIGraDi, Porto, (3)35-44.

16) Cristie, V. and Joyce, S. C.: 2018, GHShot: 3D Design Versioning

for Learning and Collaboration in the Web. Extended Abstracts of

the 2018 CHI Conference. ACM.

17) Cristie, V. and Joyce, S.C., 2017, September. Capturing And

Visualising Parametric Design Flow Through Interactive Web

Versioning Snapshots. International Association for Shell and

Spatial Structures Annual Symposia, No. 5, 1-8.

18) Myers, E. W.: 1986, An O (ND) difference algorithm and its

variations. Algorithmica 1, no. 1-4: 251-266.

19) Lawson, B.: 2006. How designers think: The design process

demystified. Routledge.

20) Schön, D. A.: 1983, The Reflective Practitioner: How

Professionals Think in Action. Ashgate Publishing.

21) Harding, J. E. and Shepherd, P.: 2017, Meta-parametric design.

In Design Studies 52, 73-95.

22) Nazim, I. and Joyce, S. C.: 2019, User Directed Parametric Design

for Option Exploration. 39th ACADIA

－495－論文 R115

