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Summary: Despite the plenty of data collected through collaborative design exercises in pedagogy settings, very few of these data 

were utilized for further studies. This occurrence is in contrast with the software development settings where software repositories 

are often mined to find insights on programmer’s software building pattern. In this work, we implemented exploratory time-series 

data analysis through design versions data collected from a parametric design workshop of 44 students in groups of five. A 

framework to discover design change pattern through in-between change count was developed. The result revealed three different 

change patterns the group exhibit: premature fixation, constant change, and last-minute work. Finally, it is found that constant 

change pattern corresponds to higher instructor-given final design computation score, as students were encouraged to explore 

sufficient design ideas in the workshop. 
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1. Introduction  

Expert designers’ ideation processes are often associated with 

breadth-first exploration as opposed to novice designer’ depth-

first exploration(1,2). While not a definite formula for better design 

outcomes, it is often seen as a good design strategy: to explore 

more design ideas in the early stage and not committing too early 

to one design idea, with ideas converging in the later stage of 

design. To evaluate design progression in a pedagogy setting, 

instructors would often require students to submit their ‘learning 

journals’(3), or ‘process book’(4) where the development and 

exploration of ideas are contained. 

The idea of evaluating design progression has turned to 

exploring digital evaluation with the birth of the web in the 90s. 

Design studio turned to virtual design studio(5), and learning 

journal became the design progression data (design versions) 

recorded online. Phase(x)(6) and OpenD(7) exemplified this by 

allowing students to upload their designs (in image and text 

format) as they progressed in their designs. In such virtual 

exercise, learning and collaboration were often the focus. 

Students were to download and modify each other’s designs in 

the spirit of collective authorship. In a more recent example in 

parametric design, an interactive design gallery was developed to 

facilitate saving and retrieving of design alternatives 

exploration(8). 

In this paper, we will focus on recording and evaluating the 

design process in parametric design. Parametric design is a way 

of representing design intent by establishing the relationships of 

its design elements(9). Due to this being on graphic interfaces 

parametric modelling is often called visual programming, a 

counter to software design’s predominantly text based 

programming. Jabi(10) further iterated that software design 

concepts such as versioning and iteration are fundamental themes 

in parametric design. It is our aim in this work to evaluate the 

parametric design process through the design versions captured, 

similar to how code versions were evaluated to understand 

programmer’s software building pattern.  

How the design progression data could be recorded online 

and how it has the potential to be evaluated similarly to code 

repository evaluation had been introduced in this first section. 

The rest of this paper continues as follows: in the second section, 

we review related works in design process evaluation through 

data analysis. Our case study and its result will be described in 

section three. Design change analysis framework and its 

implementation in the collected data will be discussed in section 

four. Section five deals with the development of design entropy 

framework and further discussion of the various measures of the 

design process. Finally, in the concluding section, we summarize 

our findings and discuss directions for future works. 

 

2. Related Works & Scope 

To understand the design process, design activity data had been 

used in numerous design protocol studies(11,12). Typically, 

designers were observed directly or recorded while designing and 

they were asked to think aloud so that their cognitive process 

could be matched with their design action. We differentiated this 

study by using design progression data instead of design activity 

data. Design progression data contains design artefacts such as 

sketch or model at different points of time throughout the design 
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process. 

A parametric design’s artefacts are a parametric model, its 

input parameters, and a resultant geometric output. To measure 

change and variance between two or more models, Brown & 

Mueller(13) have developed a diversity metric; i.e: how diverse 

geometric outputs from a parametric model is. Davis(14), 

developed complexity and flexibility metric; i.e: how easily 

understood and modified a parametric model is. Both metrics, 

however, are static measures of ‘fixed’ models; whereas the 

creation of a design including a parametric model involves 

changes and edits over time. To understand this design process 

better, a time-dependent analysis is critically needed. Prior work 

by authors(15,16,17) has demonstrated how this time-dependent 

design progression data can be captured. This paper aims to 

investigate and develop frameworks to understand this data better. 

Specifically, our research questions are: 

• How do we detect and quantify the change in the 

collected time-series parametric design data? 

• Can any pattern be found from the quantified change?  

• What does the quantified change tell about the design’s 

progression, and how does it relate to the final score? 

We seek to answer these prescribed questions firstly by 

capturing the design progression data to then use them to develop 

the analysis framework, which will be described in section 4. In 

the next part, we will describe our data collection study case. 

 

3. Design Workshop & Results 

3.1. EXPERIMENT SETTINGS 

Design progression data was collected in a 5-full-day workshop 

of undergraduate architectural computational design class. Sixty-

four students were enrolled in the class, divided into 13 groups. 

Each group was tasked to design external façade based on the 

given design scenario, which was introduced on the first day. The 

final façade had to be aesthetically pleasing and at the same time 

adhere to site specific conditions such as sun direction and 

outside views. On the second day, a base parametric model file 

containing scripts to generate, modify, and evaluate façade 

surface was given. Students were to explore this model 

individually before discussing and continuing to develop the 

model as a group on the third though to the fifth day of the 

workshop. The GHShot Grasshopper plugin versioning tool(15,16), 

was used to record student’s design progression throughout the 

workshop. At any point in the design development, students 

could send their current parametric model to cloud platform. By 

default, every model sent would be a continuation of its previous 

model. However, students could also specify if the current model 

sent was a variation/design alternative of the previous model sent. 

Establishing this continuation-or-variation was important to 

understand the overall design development (history) tree. At the 

end of the workshop, each group was to submit a design journal 

to summarize and reflect on their design journey. In addition, they 

would also need to explain important milestones in their design. 

 

3.2. RESULTS  

Out of the 13 groups, 9 groups were selected for further analysis 

(Figure 1). Four groups were not selected because there were not 

sufficient (less than four) parametric model versions sent to 

analyze their progression. 

 

 

Figure 1. Selected Groups' Design Progression. Green, red, and 

yellow line represents the number of components added, deleted, 

and changed between versions. 
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4. Design Change Analysis 

To analyze design progression from versions collected, firstly the 

design change must be detected. Change in each version is 

compared against its previous version. Once detected, the 

number of changed elements are counted from the start to the end 

of the design to see if we could gain some insight from the 

parametric model change activity. 

 

4.1. CHANGE DETECTION AND COUNT 

Each version contains its parametric model definition and 

geometrical output at the time it is sent to the server. In 

Grasshopper, designers interact with their parametric model by 

the use of visual components representing encapusulated 

computation typically geometry processes that take multiple 

inputs and outputs, these are connected by wires representing 

where the data flows and how indexing works for the model 

which is effectively a computer program. This parametric model 

definition can be saved in text-based eXtensible Markup 

Language (XML) format. With XML, each component in 

Grasshopper is represented in a ‘chunk’ of text, and each chunk 

contains information of the component’s ID, type, attributes, and 

the ID of other components that are connected to it. 

 

4.1.1 Change in Parametric Model Components 

The XML text were then parsed for a list of components and their 

ID and attributes. IDs appearing only in the newer/subsequent 

design version were detected as newly added components, while 

IDs appearing only in the older version were detected as deleted 

components. There were also IDs appearing in both versions. If 

their attributes were different in the newer and older versions, 

these were detected as changed components. Otherwise, they 

were counted as the same components in both versions. 

Parametric change score of a design version was formulated 

as the sum of the changed components count, deleted 

components count, and newly added components count. We did 

not use change percentage against the overall number of 

components as even one component change could affect the 

parametric model entirely. By using change count, higher change 

score could be expected when new ideas were implemented 

(many components were being added, and the old ones were 

deleted), as compared to lower change score when typically only 

input parameters of the model were changed. 

 

4.1.2 Change in Code Based Components 

In the studied workshop, students were encouraged to use 

scripting as part of the design exploration. In Grasshopper, this is 

possible by the use of GhPython Script component allowing for 

custom logic in a component. To further investigate the code 

based changes students did, we used a popular text comparison 

algorithm called Diff(18). Diff library used in our analysis is taken 

from Google’s Diff Match Patch [1]. It allowed us to know the 

total lines of text in the script that were same, new, or deleted. If 

a line of code was changed, it was counted as deleting the old line 

and adding a new line. Code change score was formulated as the 

sum of deleted lines count and newly added lines count. 

 

4.2. CHANGE COUNT SUMMARY 

Both change count in both parametric model components and 

code-based components were summed up to reflect the overall 

change in a particular design version. In Figure 2, parametric 

change count (in blue), code change count (in orange), and total 

change count (in green) for the different groups were visualized. 

Plotting changes in line allowed us to see different design 

iterations students went through during the workshop. When 

there was major design development or new ideas explored, the 

number of changes often spiked. The y-axes of the graphs were 

not having the same upper limit, as each group produces different 

parametric models. For example, in G10’s graph, we saw a 

pattern of changes and milestone marking (vertical line) 

repeatedly. 

 

 

Figure 2. Change count plot across groups. Design timeline is 

represented from 0 to 1, 0 being the first and 1 being the last 

design version sent. 

 

Parametric and code modification count also often spiked at 

the same time, signifying that both coding and parametric 

changes were employed to achieve student’s desired geometric 
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outcome. Overall, we observed three distinct strategies for 

geometric manipulation from the graph: 

• Parametric component modification only: a common 

occurrence found across the groups, where we saw yellow 

line fall often flat to 0 counts. This strategy is exemplified 

most in in group G4 and G12. 

• Both parametric and code modification, with 

dominant coding strategy: this could be found when a 

version’s code change count is bigger than its parametric 

change count. An example could be found at G2’s 4th 

version. 

• Both parametric and code modification, with 

dominant parametric strategy: this occured in many of 

the design versions; in general, students did less code 

modification than parametric model modification 

throughout the design process (orange line is typically 

located below the blue line). A clear example could be seen 

throughout G8’s design versions. 

 

4.3 DESIGN CHANGE PATTERN 

Given the design timeline and its resulting change count, we 

came up with a cumulative design change graph to compare the 

journey of changes each group went through. We were interested 

to find further: 

• Which group did more changes as compared to the rest? 

How did each group’s change performance when 

compared with the rest?  

• How did these changes happen? Were there more changes 

in the beginning or at the end?  

 

The highest cumulative change count came from G9 with 

over more than 1500 change counts. G1, G11, and G10 has more 

than 500 change counts. G8 has around 500 changes, and the rest 

of the group has less than 300 changes. To understand if more 

works are done in the start, middle, or end of design timeline, the 

change counts were normalized from 0 to 1 (see Fig. 3). Further, 

it could also be observed how different groups have different line 

progression ‘smoothness’. G11, G1, and G9 have sudden jumps 

in their progression, especially towards the end of the design 

timeline. This means more works were done at the end. 

We identified three design change patterns from the 

normalized cumulative change count (see Fig. 4): 

• Premature Fixation (PF): more changes are done at the 

beginning of the design and there aren’t much design 

developments after; such was shown by G2. 

• Last-minute work (LM): changes, or work to develop 

design seems slow as design progress and suddenly there 

is a drastic change at the end of the design timeline; such 

was shown by G1, G9, and G11.  

• Constant change (CC): continuous and consistent change 

throughout the design timeline; such was shown by the rest 

of the groups. 

 

Figure 3. Groups’ Normalized Change Count 

 

 

Figure 4. Design Change Activity Pattern 

 

4.4 CONNECTION TO THE FINAL DESIGN COMPUTATION 

SCORE 

At the end of the workshop, two score were given to each group, 

final design aesthetic score and final design computation score. 

For the purpose of the following discussion, we only take account 

of the design computation score, as aesthetic score is subjective 

and might not correspond to the parametric design process the 

students went through. The criteria for the computation score was 

sufficient design ideas and iterations were explored, especially as 

performed using the Grasshopper parametric software. 

As summarized in Table 1 below, those with final instructor’s 

given computation design score 4 and above are often found to 

have Constant Change pattern (CC), except G12. G8, which has 

the highest computation score (4.5), has rather a smooth linear 
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progression with higher gradient. It can be seen evidently in Fig. 

1 that G8 had plenty of design ideas explored. G2’s Premature 

Fixation (PF) were given 3.5 score. Last-minute work (LM) were 

given score 3.5, 3, and 2.5 respectively, swinging towards the 

lower spectrum of the scores. 

 

Table 1: Group’s Design Progression Summary 

group  
 

total 

sender 

total 

versions 

design 

pattern 

1st 

miles  

fixati

on 

final 

score 

G1 1 11 LM 3 early 3.5 

G2 1 9 PF 2 early 3.5 

G4 4 24 CC 6 mid 4 

G8 3 16 CC 5 mid 4.5 

G9 2 12 LM 10 late 3 

G10 1 13 CC 6 mid 4 

G11 1 6 LM 3 early 2.5 

G12 5 16 CC 6 mid 2.5 

G13 4 17 CC 7 mid 4 

 

Thus, well-performing groups in the workshop tended to 

have linear constant changes showing consistant and persistant 

effort. We speculate that this is partly due to the short duration of 

the design workshop (3 days for the group design), that constant 

change and iterations were encouraged so that more ideas could 

be explored and developed. In (19), it was mentioned that there are 

two different approaches good designers typically go through: 

either deliberating on a series of alternative solutions followed by 

a series of refinement and selection, or single idea with 

continuous revolution and evolution. It is important for designers 

to continue putting effort in the design process as it will guide the 

change direction. Such notion is consistent with Schon’s(20) 

reflection in action, where professionals were found to receive 

feedback (reflection) to their thinking process as they perform 

problem-solving action in their current projects. Merely waiting 

for an idea to appear is unlikely to be successful. 

The constant change appears to be reflective of the effort 

given in exploring the design. In a more conventional design 

scenario, we assume a plot where change is highest in the 

beginning during the design exploration phase, tapering to lower 

during design development, and eventually lowest during design 

fine-tuning as design change plateaued at the end (see Fig. 4, 

bottom right chart). Cross(2) mentioned that expert designers will 

do breadth-first exploration before going to dive into a depth-

based exploration of a particular design. In other words, designs 

do diverge first before they converge. Hence, in a longer duration 

design development, we expect to see a different type of 

cumulative graph. 

Lastly, to provide a deeper understanding of the design 

process, we also asked each group to specify which design 

version were their main design milestones, and which was the 

final design. This was visualized using blue (milestones) and red 

(final) vertical lines in Fig. 4 above. We identified at which nth 

design first milestone occurred and put it on the summary table 

under the first milestone order column. Based on this, we 

categorized if the design milestone was set (fixed) early, middle, 

or late. 1-4 is categorized as early, 5-8 as mid, and above 8 as late. 

We found an extreme case in G11 where its milestone was fixed 

early and final computation score was low (2.5). Three groups 

who set their milestone in the middle also had a rather high final 

computation score. Despite this, there isn’t any conclusive 

relationship between a group’s milestone fixation and its final 

score. Based on the literature, we would suggest having a 

milestone not too early, as more design exploration should 

typically be done before having a fixed idea. 

In section three, we have introduced the design change 

framework, and in this section, we further elaborated how the 

change frameworks can be elaborated to discover design change 

pattern during the design process. Further, the changes were 

discussed in relation to the final design score and the design 

milestone. This change framework is novel in its implementation 

in the parametric design process to the best of our knowledge. 

 

5. Conclusion and Future Work 

In this paper, we have demonstrated how captured design 

progression data can be analyzed to interpret changes each group 

went through in a design workshop. Applying time-series 

analysis, a change metric was established, by firstly calculating 

change count of a design version against its previous version in 

both the parametric model and Python script lines in Grasshopper 

XML file. This quantified change count, when normalised, 

established each group’s design change pattern, which can be 

categorised as premature fixation, constant change, and last-

minute work. When connected to the groups’ final design 

computational score, it can be observed that groups with constant 

change pattern tend to have a higher design computation score as 

compared to thos from last-minute work group. This means that 

score can be a proxy of amount of design explorations done by 

the groups. On the other flip side of the coin, it also means that 

generally the score was given objectively, rewarding groups with 

more designs explored with higher score. As a teaching aid, the 

versioning tool and the change framework can be combined as a 

method to highlight students whose design exploration might be 

sub-optimal and needing nudging to explore more designs. 

For future experiments, we are aiming for a more accurate 

design version timeline. This could be achieved by either 
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allowing design version timestamp change or enforcing a stricter 

rule to immediately sent version after each design exploration. 

Such practice will allow a better analysis of how each group 

reached the design milestone and differentiating versions that 

took longer or shorter time to achieve. In addition, we could also 

establish a change rate metric, where change count can be 

measured against the time taken to establish a particular design; 

and thus could potentially reveal greater depth in designers’ 

working pattern.  

Lastly, other than using change metric as a proxy of design 

space explored, we speculate that such automatic change 

measurement could probably be beneficial for assisting both 

automatic(21) and user-directed parametric design exploration(22). 

Change metric could serve as an internal threshold for the 

parametric component arrangement or informing designers of the 

parametric similarity of their design versions. 

 

Endnotes 

1. https://github.com/google/diff-match-patch 
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