# 光ファイバセンサを用いた振動台実験における タイルの剥離検知および地震損傷モニタリングに関する研究 Study on Tile Peeling Detection and Seismic Damage Monitoring using Optical Fiber Sensors in Earthquake Shaking Table Experiment

○関根 麻里子<sup>\*1</sup>, 工藤 正智<sup>\*1</sup>, 早野 博幸<sup>\*2</sup>, 寺本 篤史<sup>\*3</sup>, 大久保 孝昭<sup>\*4</sup>, 楠 浩一<sup>\*5</sup>
Mariko Sekine<sup>\*1</sup>, Masatoshi Kudo<sup>\*1</sup>, Hiroyuki Hayano<sup>\*2</sup>,
Atsushi Teramoto<sup>\*3</sup>, Taka-aki Ohkubo<sup>\*4</sup> and Koichi Kusunoki<sup>\*5</sup>

\*1 太平洋セメント株式会社

TAIHEIYO CEMENT CORPORATION

\*2 太平洋セメント株式会社 博士(工学)

TAIHEIYO CEMENT CORPORATION, Dr. Eng.

\*3 広島大学 助教 博士(工学)

Assistant Prof., Dept. of Engineering, Hiroshima Univ., Dr. Eng.

\*4 広島大学 教授 工博

Professor, Dept. of Engineering, Hiroshima Univ., Dr. Eng.

\*5 東京大学地震研究所 教授 博士(工学)

Professor, Earthquake Research Institute, The University of Tokyo, Dr. Eng.

**キーワード**:振動台実験;光ファイバセンサ;タイル;剥離;モニタリング **Keywords:** earthquake shaking table experiment; optical fiber sensor; tile; peeling; monitoring.

# 1. はじめに

地震による大規模災害後は,官公庁舎,病院,避難所 などの災害対策拠点となる重要建物において災害後速や かに構造安全性や継続使用の可否を判定する必要がある。 また,仕上材がある建築物で目視によるひび割れを確認 できない場合,損傷程度を評価するのは困難である。内 部のひずみを計測する方法として埋め込み型ひずみ計が 挙げられるが,それ自体が異物となり内部のひずみ分布 に影響を及ぼす懸念がある。

一方,建物の継続使用の観点から,構造物だけでなく 非構造物についての判定も重要である。特に外装タイル は地震などの災害による剥離や剥落の問題が多く,通行 人へ二次被害を及ぼす可能性がある。現状,外装タイル の剥離検知方法は打音検査が一般的であるが,多くの手 間や時間がかかる上,人により判定に差異が生じるとい う課題があり,即時判定の手法としては適していない。

そこで本研究では、タイルと下地コンクリートの間の ひずみ差(ディファレンシャルムーブメント)に着目し、 タイルの接着性能に影響を及ぼさないよう極めて細径の 光ファイバセンサを用いて剥離検知モニタリングを行な った。

また,主要構造部材内にも光ファイバを使用すること で異物感なくコンクリート内部のひずみを取得し,損傷 モニタリングへの適用検討を行った。

#### 2. 実験概要

#### 2.1. 試験体概要

試験体は図1に示すように実大3階建てRC構造物で あり、一部をモルタルまたは弾性接着剤を用いてタイル 張りとしている。図中の1・3F①~⑥,2F①~④に、タ イル剥離検知用の光ファイバを下地およびタイル表面に 貼り付けた。また、図1の1・3F①~④のコンクリート





内部に光ファイバモルタルセンサ(以下モルタルセンサ) を設置した。設置状況を写真1に示す。また、タイル貼 付面の反対側の架構の柱および袖壁の鉄筋にひずみゲー ジを設置した。

2.2. センサ概要

タイル剥離検知には直径 0.15mm のポリイミド被覆の FBG 型光ファイバセンサを用いた。図2に示すように躯 体コンクリート表面に設置した光ファイバセンサ検知部 の直上にもう一つの光ファイバセンサ検知部が位置する ように貼付けた。

主要部材内のコンクリートひずみのモニタリングには、 モルタルセンサを用いた。モルタルセンサは図3に示す ように外径150µmの光ファイバセンサの長さ1cm程度 の検知部(FGB部)を中心に、φ20mm×h50mmの円柱 状にモルタルを被覆したセンサである。モルタル被覆す ることで、コンクリート打設時の衝撃による光ファイバ センサの損傷を防ぎ、さらにセメント系材料で剛性も躯 体と近いため、ひび割れ性状や測定系に与える影響は小 さい。ひずみの計測は100 Hzで行った。

2.3. 加振方法

2.1 で示した RC 構造物試験体に対し, 実大三次元振動 破壊実験施設(E・ディフェンス)において加振を行った。

人工地震波は工学的基盤の告示スペクトルを基準に定め、 位相には JMA 神戸波の NS 成分を用いた。地震波の大 きさは一般建築物の設計レベルを 100%とした際の、 20%、100%、150%(災害拠点建築物の設計目標レベル)、 150%2nd(最大余震レベル)、160%である。振動方向は 図1内に示すようにタイル面に対し水平方向である。人 工地震波 100%、150%、160%入力後、目視によるひび 割れ調査およびタイルの打診検査を行った。

### 3. 試験結果

## 3.1. タイル剥離検知

表1に光ファイバセンサを設置したタイルの打診検 査結果を示す。人工地震波160%の入力までに、光ファ イバセンサを設置したタイルのうち半数近くに剥離が生 じた。既往の研究<sup>1)</sup>では、光ファイバセンサを用いた試 験体の静的載荷実験において、タイル剥離が生じること により躯体とタイル間でひずみ差が生じることを確認し ている。光ファイバセンサによる健全なタイル(2F①部) と剥離が発生したタイル(1F①部)のひずみの測定例とし て図4、5に示す。本加振実験は3日間にわたり実施して おり、加振時以外のひずみの測定を行っていない。その



図5 剥離が生じたタイルのひずみ履歴

| 位置               | 1F |   |   |             |   |   | 2F |   |   |   | 3F |   |   |          |   |   |
|------------------|----|---|---|-------------|---|---|----|---|---|---|----|---|---|----------|---|---|
| 地震波              | 1  | 2 | 3 | 4           | 5 | 6 | 1  | 2 | 3 | 4 | 1  | 2 | 3 | 4        | 5 | 6 |
| $20 \cdot 100\%$ |    |   |   |             |   |   |    |   |   |   |    |   | Δ | Δ        |   |   |
| 150%             | ×  | × |   | $\triangle$ |   | Δ |    |   |   |   |    |   | × | $\Delta$ |   |   |
| 150 · 160%       | ×  | × | × | ×           |   | Δ |    |   | Δ | × | Δ  | × | × | Δ        |   |   |

×:センサ設置タイルが剥離 △:隣接タイルが剥離

表1 打診検査結果



ため、人工地震波100%と150%の間に不連続なひずみが 生じているが、測定時の温度差に起因するものと考えら れる。図4 では入力地震波に関係なく、下地コンクリー トとタイルのひずみは同程度のひずみ履歴を示し、タイ ルの接着が健全であることがわかる。一方,図5では人 工地震波 150%入力時に下地コンクリートのひずみが約 150 µ に達した直後から,下地コンクリートとタイルの間 でひずみ差が生じ、その後地震波が入力される毎にその 差は広がった。打診検査では 1F①部のタイルにおいて 150%人工地震波入力後にタイルの剥離が確認された。下 地コンクリートとタイルのひずみ差が発生した瞬間にタ イルの剥離が生じたと考えられる。1F⑥部のタイルにお いては 150%入力後, 隣接タイルは剥離したが当該タイ ルは健全であることが確認された。このことから下地コ ンクリートとタイルのひずみ履歴からタイルの剥離検知 が行える可能性が示された。

図6 に1F①部における剥離前の100%入力時および剥 離後の 150%2nd 入力時のタイルと下地コンクリートの ひずみの関係を示す。図の近似線の傾きは、剥離前は 0.15, 剥離後は 0.07 であり、剥離が生じた後は下地コンクリー トのひずみに対するタイルのひずみ追従性が低下してい ることが確認された。光ファイバセンサによる下地コン クリートとタイルのひずみをモニタリングすることによ り、タイルの剥離程度も推察できる可能性がある。 3.2、構造物損傷モニタリング

コンクリート内部に設置したモルタルセンサによって 取得したひずみの一例として,図7に1F④部の人工地 震波20%入力時のひずみ挙動,図8に1F④部の人工地 震波160%入力時のひずみ挙動を示す。図7においてコ ンクリートは弾性域にあり,振動後も残留ひずみが見ら れず,損傷がないことがわかる。人工地震波100%振動 後の目視による損傷調査において1F④部周辺にひび割 れは確認されなかった。一方,図8に示す人工地震波 160%の場合は振動によって生じた最大ひずみは9000 μ程度,残留ひずみは2000μ程度と甚大な損傷が生じた。 この振動後1F④部付近の複数のひび割れのうち最大ひ



図 11 1F⑤150%2nd 入力時のひずみ挙動

び割れ幅は4㎜であった。このように表面にひび割れが 生じる損傷では、内部に残留ひずみが発生しており、仕 上材などでひび割れ幅を測定できない際に、残留ひずみ を損傷度の指標にできる可能性がある。残留ひずみが生 じた場合について、残留ひずみと測定部付近のコンクリ ートのひび割れ幅の関係を図9にまとめた。明確な関係 は見られないが、残留ひずみが大きくなるほどひび割れ 幅が増大する傾向が認められる。また,柱・袖壁の部材 による差異も確認されなかった。RC部材の損傷度(I~ IV)はひび割れ幅で評価<sup>2)</sup>されており,コンクリート内に 埋設したモルタルセンサで取得した残留ひずみによって 損傷度を概ね推定できる可能性を示している。

続いて、1F①のコンクリートと鉄筋のひずみに着目 すると、人工地震波 100%までは鉄筋が引張応力を負担 しており、コンクリートには残留ひずみが生じていない。 人工地震波 150%以降ではコンクリートに圧縮側のひず みが生じ,図11に示す人工地震波150%2ndの入力では, 最大で1000 μ程度の圧縮ひずみが取得された。なお、コ ンクリートに圧縮ひずみが発生した全ての入力地震波に おいて、鉄筋に圧縮ひずみは生じておらず、コンクリー トが圧縮応力を負担していたことがわかる。振動後の目 視調査によって中央の柱に隣接する袖壁が基礎との接合 部付近で圧壊しており、中央の柱においても柱脚部に大 きなひび割れが多数生じていることが確認された。この 袖壁は1F②の位置にモルタルセンサを設置しており、こ ちらでも入力地震波 100%以降, 300μ以上の圧縮ひず みが生じている事が確認された。このことから、主要部 材にモルタルセンサを設置することで、コンクリートに 生じた圧縮ひずみの履歴から部材の圧壊などの甚大な損 傷を推測できる可能性が示された。

図 12 に層間変位最大時の人工地震波 20%, 100%, 150%の1Fと3Fにおける、隣り合う柱・袖壁のひずみ の関係を示す。また、図 12 の①~④は図 1 の①~④に 一致し、1F・3F それぞれのセンサ設置位置を示す。① は中央の柱, ②は中央の柱に接する袖壁, ③は端部の柱 に接する袖壁,④は端部の柱である。隣り合う①②,③ ④の部材のひずみの大小関係(傾きの正負)に着目する と、人工地震波 20%入力時の①②、および③④の傾きの 正負が1Fと3Fで逆転している。これはモルタルセンサ の設置位置が1Fは柱脚と3Fは柱頭であり、人工地震波 20%では各部位のひずみも小さいため、まだ塑性変形が 生じておらず,水平力を受けた柱頭と柱脚の圧縮と引張 の向きが逆になるためである。人工地震波 100%入力時 には③④が、150%の入力時には①②と③④両方の傾き の正負が1Fと3Fで一致した。3Fの①②,③④の傾き の正負は入力地震波に関わらずほぼ同じであり、塑性変 形が 1F に偏っていたものと考えられる。また、人工地 震波が大きくなるに従って傾きの値が大きくなっており, フレームの変形が増大していることがわかる。

# 4. まとめ

光ファイバセンサを用いた外装タイルの剥離の即時検 知および主要部材の損傷モニタリングに関して, E-ディ フェンスにおいて振動台実験を行った。その結果,下記 の知見を得た。



図 12 層間変位最大時における部材間のひずみの関係

1)下地コンクリートとタイルのひずみ挙動よりタイルの 剥離検知モニタリングが可能であり、下地コンクリート のひずみに対するタイルのひずみ追従性からタイルの剥 離程度も評価できる。

2)コンクリート内に埋設した光ファイバモルタルセンサ の残留ひずみから、コンクリート部材の損傷度を推定で き、圧縮ひずみの履歴から部材の圧壊などの甚大な損傷 を推測できる可能性を示した。

3)複数の部材間のコンクリートひずみの傾きやひずみの 値から、フレームの変形程度を評価できる可能性がある。

#### 謝辞:

本研究は、「首都圏を中心としたレジリエンス総合力向 上プロジェクト サブ(c)非構造部材を含む構造物の崩壊 余裕度に関するデータ収集・整備」の一部であり、関係 各位にご協力戴いた。付記して感謝します。

#### [参考文献]

1) 関根麻里子ほか:光ファイバセンサを用いたタイルの剥離 検知に関する研究,第73 回セメント技術大会講演要旨,pp.254-255 (2019)

 2) 西川孝夫ほか:鉄筋コンクリート構造物の耐震性能評価指 針(案)・同解説,日本建築学会(2004)