斜め柱を考慮したシェル屋根の柱配置最適化

Optimization of column arrangement for shell roofs considering slanted columns

o小南 修一郎*1,藤田 慎之輔*2 Shuichiro Kominami*1, Shinnosuke Fujita*2

*1 北九州市立大学大学院 国際環境工学研究科 大学院生

Graduate Student, Faculty of Environmental Engineering, The University of Kitakyushu *2 北九州市立大学大学院 国際環境工学研究科 准教授

Assoc. Prof., Graduate School of Environmental Engineering, The University of Kitakyushu, Dr. Eng.

キーワード: 柱配置最適化 地震力 シェル構造 Keywords: Optimization of the column arrangement Seismic force Shell structure

1. はじめに

シェルなどの大スパン構造物は、その形状が力学性状 に与える影響が非常に大きいことはもちろんであるが、 境界条件の差異によってもその力学性状は大きく変化す る.複数の柱で支持されるシェル屋根を想定した場合、 支える位置によってその構造物の力学的合理性が大きく 左右される.しかし、鉛直荷重だけではなく地震力も考 慮した場合、シェル構造物に対して力学的に合理的な柱 配置を設計者の経験や感覚で導くことは難しい.

そこで本研究では、シェル構造物を支持する柱配置の 最適化手法の提案および設計支援ツールとして、外力と して長期荷重に加えて地震力も考慮し、斜め柱の配置も 選択肢に含めた柱配置最適化手法の提案を行う.

2. 理論準備

2.1. 柱配置の表現

シェル屋根を支える柱配置は連続変数として定式化す ることは難しいため,整数変数を用いて柱の有無を表現 する.柱位置の表現方法は複数考えられるが,既往研究 ¹⁾で解の収束が良好だった方法を元に設定する.本研究 では,有限要素の節点は $(n_x+1) \times (n_y+1) = n$ 個格子 状に存在するものとし,シェル屋根の各節点に対応した 格子点を設ける.さらに,柱脚レベルにも屋根面と同様 に格子状に節点を設け,各節点に対応した格子点を設け る.シェル屋根は全部で n 本の柱に支持されるものとす る. e 番目の柱の柱脚及び柱頭における格子点 x, y 座 標をそれぞれ $(\hat{x}_{le} \ \hat{y}_{le})$ 及び $(\hat{x}_{ue} \ \hat{y}_{ue})$ と表し,それ らを並べた整数変数ベクトルを次のように定義し,設計 変数とする.

$$\hat{\boldsymbol{x}}_{l} = \begin{pmatrix} \hat{x}_{l1} & \cdots & \hat{x}_{l\bar{n}} \end{pmatrix}^{\top}, \quad \hat{x}_{le} \in [0, \cdots, n_{x}] \quad (1)$$

日本建築学会情報システム技術委員会

第43回情報・システム・利用・技術シンポジウム論文集, 168-171, 2020年12月, オンライン Proceedings of the 43rd Symposium on Computer Technology of Information, Systems and Applications, AIJ, 168-171, Dec., 2020, Online

$$\hat{\boldsymbol{y}}_{l} = \begin{pmatrix} \hat{y}_{l1} & \cdots & \hat{y}_{l\bar{n}} \end{pmatrix}^{\top}, \quad \hat{y}_{le} \in [0, \cdots, n_{y}] \quad (2)$$

$$\hat{\boldsymbol{x}}_u = \begin{pmatrix} \hat{x}_{u1} & \cdots & \hat{x}_{u\bar{n}} \end{pmatrix}^\top, \quad \hat{x}_{ue} \in [0, \cdots, n_x]$$
 (3)

$$\hat{\boldsymbol{y}}_u = \begin{pmatrix} \hat{y}_{u1} & \cdots & \hat{y}_{u\bar{n}} \end{pmatrix}^\top, \quad \hat{y}_{ue} \in [0, \cdots, n_y]$$
(4)

e番目の柱の柱脚レベル,柱頭レベルにおける節点座 標を次式のように表現する.

$$\boldsymbol{r}_{el} = \begin{pmatrix} x(\hat{x}_{le}, \hat{y}_{le}) & y(\hat{x}_{le}, \hat{y}_{le}) & z(\hat{x}_{le}, \hat{y}_{le}) \end{pmatrix}^{\top}$$
(5)

$$\boldsymbol{r}_{eu} = \begin{pmatrix} x(\hat{x}_{ue}, \hat{y}_{ue}) & y(\hat{x}_{ue}, \hat{y}_{ue}) & z(\hat{x}_{ue}, \hat{y}_{ue}) \end{pmatrix}^{\top}$$
(6)

このとき,柱は r_{el} と r_{eu} を接続する位置に合計 \bar{n} 本存 在することとなる.

境界条件は柱脚位置での固定支持とする.

2.2. 最適化問題の定式化

本研究では、ひずみエネルギーと柱の総体積の双方を 目的関数とした多目的最適化を行う.その際、制約条件 として鋼構造設計規準の応力制約を考慮する.検定比を 1以下に抑えるためには、柱配置と共に、柱断面につい ても適切なものを選択する必要がある.本研究では、柱 断面の候補として表1に示すような7種類の鋼管を用意 する.各柱の断面番号を並べた整数変数ベクトルsを次 のように定義し、設計変数とする.

$$\boldsymbol{s} = \begin{pmatrix} 1 & \cdots & s_{\bar{n}} \end{pmatrix}, \quad s_e \in [1, 2, \cdots, 7]$$
(7)

e 番目の柱の断面積を a_e ,要素長さを l_e ,検定比を k_e ,長期荷重時のひずみエネルギーを f_L ,X,Y方向地 震時のひずみエネルギーをそれぞれ f_X , f_Y とする.本 研究では設計変数を $\mathbf{X} = \begin{pmatrix} \hat{\mathbf{x}}_l^\top & \hat{\mathbf{y}}_l^\top & \hat{\mathbf{x}}_u^\top & \hat{\mathbf{y}}_u^\top & s^\top \end{pmatrix}^\top$

-168 -

表 1 柱断面リスト				
No	部材	直径 [m]	厚さ [m]	
1	0	0.1016	0.004	
2	0	0.1652	0.005	
3	0	0.2163	0.008	
4	0	0.2674	0.009	
5	0	0.3556	0.009	
6	0	0.4572	0.012	
7	0	0.6	0.012	

として次の最適化問題を解く.

$$S = f_L + f_X + f_Y + \alpha$$

minimize
$$X \qquad V = \sum_{e=1}^{\bar{n}} \left(l_e \times a_e \right) + \alpha$$
(8)

最適化計算には遺伝的アルゴリズムによる多目的最適化 を行うことのできる Grasshopper のコンポーネントであ る Wallacei²⁾を用いる. Wallacei は直接的に制約条件を 考慮することができないため,ひずみエネルギーと体積 の双方に検定比に応じたペナルティ項

$$\alpha = \sum_{i=1}^{\bar{n}} 1000 \left(\max\left\{ k_e - 1, 0 \right\} \right) \tag{9}$$

を設けている.ここで k_e は要素 e の検定比 (の最大値) である.弾性解析には OpenSees³⁾ を用いる.地震時水 平力は,面荷重 + 自重の鉛直荷重 $w_i(i = 1, \dots, n)$ と設 定した水平震度 K の積 Kw_i を,各節点重量に応じて X,Y 方向にそれぞれ作用させるものとする.

3. 解析モデル

本研究では, $z(\hat{x}_{le}, \hat{y}_{le}) = 0(e = 1, \dots, 7),$ $z(\hat{x}_{ue}, \hat{y}_{ue}) = 4.0(e = 1, \dots, 7)$ のプレート状の解析モ デルを用意する. 屋根はシェル構造, 柱は鋼管を想定し たモデルとする. モデルの平面形状は 20m×20mの正方 形平面とし, 節点は 7 × 7 の格子状に配置し節点数は $n = 49(n_x = n_y = 6)$, 要素数は m = 36とする. 初期 の柱配置は四隅の点とし, 柱の高さは 4.0 m, 断面はす べて表 1 の No.1 とする. シェル屋根は表 2 に示す材料 及び断面を有するものとする. 柱の隣に記載されている 数値は検定比となっており, 柱頭・柱中心・柱脚の値を 示している. 荷重条件は, 鉛直荷重は自重に加えて鉛直 下向きに面荷重 1kN/m² を, 地震時水平力については水 平震度 K=0.3 とした集中荷重をそれぞれ作用させるこ ととする.

衣 Z ンエル座恨の材料及ひ町囬情報				
ヤング係数 E[kN/㎡]	ポアソン比	厚さ [m]	重量密度 [kN/㎡]	
2.10×10^7	0.2	0.1	24	

表3 柱断面および検定比最大値, 柱総体積 柱断面 検定比最大値 柱総体積 [㎡] 0,0,0,0 18.41 0.02

表4 7	ひずみエネル	レギー値	
$f_L + f_X + f_Y$ [kNm]	f_L [kNm]	f_X [kNm]	f_Y [kNm]
668.45	519.57	74.44	74.44

4. 柱配置最適化結果

 $X = \begin{pmatrix} \hat{x}_l^\top & \hat{y}_l^\top & \hat{x}_u^\top & \hat{y}_u^\top & s^\top \end{pmatrix}^\top$ として最適化問 題 (8) を Wallacei により解く. Wallacei の計算回数は GenerationSize を 50,GenerationCount を 150 とする. パ レート最適曲線を図 3 に, パレート最適解を Cluster1 か ら Cluster5 の 5 つに分類し, 1 つの分類から解を 1 つ選 択する. そのときのそれぞれの柱配置と検定比を図 4, 図 5, 図 6, 図 7, 図 8 に, 選択された柱断面および検定比 の最大値, 柱の総体積を表 5 に, パレート最適解のひずみ エネルギーを表 6 にそれぞれ示す.

表 5 選択された柱断面および検定比最大値, 柱総体積

	柱断面	検定比最大値	柱総体積 [㎡]
Cluster1	7,7,5,7	0.44	0.31
Cluster2	7,7,4,7	0.46	0.30
Cluster3	7,6,4,7	0.52	0.27
Cluster4	4,6,4,7	0.70	0.22
Cluster5	4,5,4,6	0.89	0.17

(d) 短期荷重検定比図 5 柱配置および検定比(Cluster2)

(c) 長期荷重検定比

(d) 短期荷重検定比図 6 柱配置および検定比 (Cluster3)

5. 考察

多目的最適化特有のパレート最適曲線(図3)が正し くプロットされいることが確認できる.選択されたすべ

表6 パレート最適解におけるひずみエネルギー値

	$f_L + f_X + f_Y$ [kNm]	f_L [kNm]	f_X [kNm]	f_Y [kNm]
Cluster1	19.13	18.17	0.47	0.49
Cluster2	19.22	18.23	0.48	0.51
Cluster3	19.48	18.30	0.60	0.60
Cluster4	20.92	18.44	1.52	0.97
Cluster5	23.11	18.72	2.86	2.78

ての解において検定比を1以下に抑えることができている.このことから,設計する際にはパレート最適解から 自由に解を選択することができる.

地震力を設定しているため, すべての解において斜 め柱が選択される結果となった. Cluster1 から Cluster3 が同様の柱配置, Cluster4 と Cluster5 が同様の柱配置と なっており, 最適化後の柱配置はどの解も大きく位置が ずれることはなく, 初期の柱配置よりも中心に配置され る結果となった.

ひずみエネルギーに着目すると、最適化前のひずみエ ネルギーが約 668[kNm] であるため、最適化後の解は大 幅に減少していることが確認できる.パレート最適解で はL荷重(鉛直荷重)の値が大きく支配的であるといえ るが、値の変化はそれほど見られず、X、Y 荷重(地震 力)の値の変化による差が大きいことが確認できた.つ まり、斜め柱の配置によって地震力に対する力学性能は 変化することが確認できた.

6. まとめ

本研究では,設計支援ツールとしてシェル構造物の柱 配置の最適化手法を提案した.今回用いた解析モデルの 規模であれば短時間で解を求めることができる.本手法 を用いて,設計者の求める建築形態に合わせた構造形態 を提示することを目的としているが検討課題も残って いる.

今後の展望として,屋根部分の形状の複雑化および形 状の同時最適化が考えられる.形状と柱配置を同時最適 化することでより力学的性能を高めることができると考 えられる.

[参考文献]

- 小南修一郎,藤田慎之輔.シェル構造の柱配置と形状の同時最適化. コロキウム構造形態の解析と創生 2019, 2019.11.
- 2) Showkatbakhsh M. Makki, M. and Y. Song. Wallacei. Wallacei, 2018.
- M. Zhu, F. McKenna, and M. Scott. Openseespy: Python library for the opensees finite element framework. *SoftwareX*, Vol. 7, pp. 6–11, 2018.1.