# OpenSees for Grasshopper と Wallacei による CLT 折版構造のパラメトリックスタディ Parametric study in CLT folded-plate structure by Opensees for Gresshopper and Wallacei

○齋藤 魁利<sup>\*1</sup>,藤田 慎之輔<sup>\*2</sup>
Kairi Saito<sup>\*1</sup>, Shinnosuke Fujita<sup>\*2</sup>

# \*1 北九州市立大学大学院 国際環境工学研究科 大学院生

Graduate Student, Graduate School of Environmental Engineering, The University of Kitakyushu \*2 北九州市立大学大学院 国際環境工学研究科 准教授 工博

Associate Professor, Graduate School of Environmental Engineering, The University of Kitakyushu, Dr. Eng.

**キーワード**: CLT 折版構造 OpenSees for Grasshopper Wallasei 遺伝的アルゴリズム Keywords: CLT folded-plate structure OpenSees for Grasshopper Wallasei GA

#### 1. 概要

折紙工学は近年目覚ましい発展を遂げており,対話 的に折紙の設計や折り畳みのシミュレーションができる インターフェースやソフトウェアが開発されている<sup>1,2)</sup> .それらは主に作品としての折紙が想定されている.

一方,建築構造物の設計においても,折紙工学の知見 を利用した事例は多く存在する. 折紙の性質を利用した 構造形式として最も単純なものは折版構造であろう.折 版構造は,古くは九州工業大学記念講堂や群馬音楽セ ンターなどが有名であるが,RC で大スパンを可能にす る構造形式として用いられてきた.近年では、合板を積 層接着した厚型パネルである Cross Laminated Timber(以 下, CLT) が登場し, 2016 年の告示改正以降, CLT パネ ル工法により建築構造物を建てることが可能となった. CLT パネル工法で大スパンを飛ばすためには形態剛性 を利用する方法が考えられるが、シェルなどのように曲 線要素を含まず直線要素のみで架構を構成可能な折版構 造は CLT パネル工法と相性が良い. 例えば, 第2著者 は CLT パネル工法としては日本で初めて折版構造によ る木質大空間を構造設計しており,8m 超の階高と8m 超の無柱空間をわずか 90mm の CLT パネルのみで実現 している<sup>3)</sup>(図 1).

折版構造はパネル同士の角度によって剛性が材積が



図1 北九州市立大学メルディア高機能木材研究所

日本建築学会情報システム技術委員会 第43回情報・システム・利用・技術シンポジウム論文集, 172-175, 2020年12月, オンライン Proceedings of the 43rd Symposium on Computer Technology of Information, Systems and Applications, AIJ, 172-175, Dec., 2020, Online

変化するほか,モジュールが存在するためパネルサイズ によっては歩留まりが悪くなるなど,コスト面とトレー ドオフの関係にあり,最適なパネル組み合わせを人間の 直感と感性で決定するのは難しい.そこで本研究では, ケーススタディとしてアーチ型の折版構造を対象とし, GAにより多目的最適化を行い,特に折版構造の剛性と 表面積の関係について考察する.

#### 2. 解析モデルの概要と最適化問題

本研究では,次のようなアーチ型の折版構造を取り扱 う.工学的応用が可能な折りパターンとしてはミウラ折 りや吉村パターン,ナマコ折りなどが有名であるが,本 モデルは吉村パターンを四辺形要素の拡張したものと なっている.



$$L = \frac{20 \cdot 2(2 - S/L)}{\sin \theta_r \cdot \left\{ 1 - \frac{1 - S/L}{\tan^2 \theta_r \cdot \tan^2 \frac{\theta_1}{2}} + \frac{r' \cdot S/L}{\tan \theta_r \cdot \tan \frac{\theta_1}{2}} \right\}}$$
(1)

$$\theta_1 = \frac{2}{Pit - 1} \left(\frac{\pi}{2} + \theta_r\right) \tag{2}$$

$$W_x = \frac{L-S}{2} \tan\left(\frac{\theta_1}{2}\right) \tag{3}$$

$$\theta_2 = \pi - \arccos\left(W_x/W\right) \tag{4}$$

 $W_y = W\sin\left(\theta_2\right) \tag{5}$ 

$$r' = 0.5 - r/S$$
 (6)

Pit: 一列における部材の個数 (7 個)

- $\theta_r$ : モデル根元の角度
- L: 部材の長手長さ
- S: 部材の短手長さ
- W: 部材の幅

図 3) に示すような 2 種類の部材 (図 5,図 6) で構成 される折版アーチを考える.20m×20mを覆うよう に大きさを調整し,2n 列で形成されている.なお,3 層 3 プライの CLT を想定し,板厚 90mm,単位重量 4.0kN/m<sup>3</sup>,ヤング係数 4.0×10<sup>6</sup>kN/mとする.ジオメ トリは grasshopper(以下,gh)により生成し<sup>4)</sup>,弾性解 析は OpenSees,最適化には GA による多目的最適化 の gh プラグインである Wallacei<sup>5)</sup>を用い,式(7) に示 す歪みエネルギー E と表面積 V を目的関数とした多 目的最適化を行う.

部材の短手方向の長さSは長手方向の長さLより 小さくし (式 (7b)),部材幅の連続方向の長さ $W_y$ は 20m スパンを覆う最小限の長さとし (式 (7c)),根元の 部材長さrはS以下とし (式 (7d)),根元の部材角度 $\theta_r$ は $-\pi/6$ から $\pi/6$ までに制約した (式 (7e)).そして, GAの集団サイズは50,世代数は100とした.なお, 要素の辺長が小さくなりすぎると弾性解析がエラー を起こすため,S,r,rの反対側の辺は節点間の距離が 極端に小さくならないような処理を解析中で施して いる.

minimize 
$$\begin{cases} V(S/L, r', W, \theta_r) \\ E(S/L, r', W, \theta_r) \end{cases}$$
(7a)

 $0 \le S/L \le 1.0$ 

subject to

$$2(n-1)W_y < 20 < 2nW_y$$
 (7c)

$$-0.5 \le r' \le 0.5$$
 (7d)

(7b)

$$-\pi/6 \le \theta_r \le \pi/6 \tag{7e}$$

### 3. 最適化結果と考察

 $n = 7 \sim 17$  の全 11 パターンについて多目的最適化 を行った結果を図 7 ~ 図 28 及び表 1 にそれぞれ示す. 図 7 ~ 図 28 は、左にパレートフロントを示し、右の (a), (b), (c) にそれぞれ「V が最小となる解」、「V と E がバランスよく最小化されたパレートフロントにおけ る中央部の解」、「E が最小となる解」の形状図を示し ている. また、表 1 にそれぞれの最適解の目的関数値 をまとめている.

|                  |                  |              |             |                  | -                 | 表           | 1          | 最近           | <u></u><br>⑧化  | 結          | 果        |          |              |          |              |            |    |
|------------------|------------------|--------------|-------------|------------------|-------------------|-------------|------------|--------------|----------------|------------|----------|----------|--------------|----------|--------------|------------|----|
|                  | n                | V[n          | (ส<br>า²]   | a)<br><i>E</i> [ | kNn               | ןו          | V[r]       | (<br>n²]     | b)<br><i>E</i> | [kN        | lm]      | V        | m²]          | (C)<br>E | [kN          | m]         |    |
|                  | 7                | 456          | .63         | 0.               | 124               | 3           | 477        | .77          | 0.             | 04         | 58       | 56       | 3.33         | 0        | .029         | 8          |    |
|                  | 8<br>9           | 456.         | .21<br>.90  | 0.               | 124               | 2<br>4      | 477<br>477 | .64<br>.02   | 0.<br>0.       | .04<br>.04 | 25       | 58<br>59 | 1.91<br>6.89 | 0        | .030         | )0<br>)2   |    |
|                  | 10<br>11         | 455.<br>455. | .64<br>.44  | 0.1              | 124:<br>124:      | 3,<br>3,    | 477<br>475 | 2.08<br>5.52 | 0.<br>0.       | .04<br>.04 | 10<br>15 | 60<br>61 | 9.91<br>2.37 | 0        | .030<br>.031 | )6<br>17   |    |
|                  | 12               | 455.<br>455  | .26         | 0.1              | 124               | 2           | 476<br>470 | 6.57<br>0.32 | 0.             | 04         | 01       | 64<br>56 | 5.12<br>2 75 | 0        | 031          | 13         |    |
|                  | 14               | 454          | .99         | 0.1              | 124               | 1           | 470        | 0.62         | 0.             | 04         | .37      | 55       | 7.89         | 0        | .033         | 30         |    |
|                  | 16               | 454          | .00         | 0.               | 124               |             | 468        | 3.28         | 0.             | .04        | 40       | 55       | 3.06         | 0        | 032          | 29         |    |
|                  | 17               | 454.         | .70         | 0.               | 124               | 1           | 468        | 5.67         | 0.             | .04        | 29       | 55       | 2.27         | 0        | .032         | 29         |    |
| 0.12             | Ļ                |              |             |                  |                   |             |            |              |                |            |          | T        | Ŧ            | UNN      | A            |            |    |
| 0.10<br>E 0.08   |                  |              |             |                  |                   |             |            |              |                |            | T        | T        |              | Z        | S            | X          | to |
| <u>*</u><br>0.06 | -                | $\setminus$  |             |                  |                   |             |            |              | F              |            |          |          | 1            |          | X            | 1 Ale      |    |
| 0.04             |                  |              | -           | _                |                   |             |            |              |                |            |          | (        | (a)          |          | A            | 5          |    |
| ت<br>ا           | 460<br>7         | 480          | 500<br>V    | 52<br>[m2]       | 。<br>54<br>早達     | 0<br>(合力)   | 560        |              |                |            |          |          | 2            | 14       | Z            |            |    |
| ₽<br>8           | ≤<br>-           |              |             | -                | 取鸠                | . 円件        |            |              |                |            | H        |          |              |          |              |            | A  |
| _ 6              |                  |              |             | _                |                   |             |            |              |                |            |          |          |              |          | X            | P          | 2  |
| ngth [m          |                  | $\leq$       |             |                  |                   |             | - W<br>- S | 1            |                |            |          | (        | (b)          |          | V            |            |    |
| <u>ā</u><br>2    | -                |              |             |                  | _                 | -           | - r        |              |                |            |          | 1        | 11           | 1        |              |            |    |
| C                |                  | 21           | 00          | 40               | 10                | 60          | 20         |              |                |            |          |          |              | 9        |              | $\bigcirc$ |    |
|                  | 図 8              | パ            | V min<br>レー | > i              | ≣ min<br>最適       | í解          | 12         |              |                |            |          | 7        | Q            | 9        |              |            |    |
| ć                | との               | )各寸          | 法           |                  |                   |             |            | 1            |                |            |          | (        | (c)          | 1        | $\bigcirc$   |            |    |
| 0.12             | 1                |              |             |                  |                   |             |            |              |                |            |          | T        | Ţ            |          | Z            |            |    |
| 0.10             |                  |              |             |                  |                   |             |            |              |                |            |          | T        |              | 74       |              | X          | 4  |
| 0.06             |                  |              |             |                  |                   |             |            |              | F              | 1          |          |          | X            |          | X            |            | ha |
| 0.04             | -                |              |             |                  |                   |             |            | D            |                |            |          | (        | (a)          | X        | Ø            | -          |    |
|                  | 460              | 480          | 500 V       | 520<br>[m2]      | 540               | 560         | 580        |              |                |            |          | 4        | 87           | 2        |              |            |    |
|                  | ☑ 9              | パ            | ν-          | - ト:             | 最適                | i解          | 2          | 1            |                |            |          |          | Æ            |          |              |            |    |
| 8                |                  |              |             | _                |                   | 1           |            |              |                |            | 25       | Æ        | 4            |          |              | S          | P  |
| th [m]           | F                |              |             |                  |                   |             | L<br>W     |              |                |            |          | (        | (b)          |          |              | A.         |    |
| r<br>leng<br>2   |                  |              |             |                  |                   | -           | ⊢ S<br>⊢ r |              |                |            |          |          | F+           | 1        |              |            |    |
| C                |                  |              |             |                  |                   |             |            |              |                |            |          |          |              |          |              |            |    |
| 5                | ঁ<br>তা <b>া</b> | 20           | 00<br>Vmin  | 400<br><-> F     | )<br>E min<br>人 是 | 600<br>))   | i在2        |              |                |            | H        | 1        | 4            |          | / ,          |            |    |
|                  | ≏ '<br>ごと        | 。<br>の各      | 、レ          | Ę.               | 1、1文              | <u>Jiří</u> | . /3千      |              |                |            |          | (        | (c)          |          | Q            |            |    |
|                  |                  |              |             |                  |                   |             |            |              |                |            |          |          |              |          |              |            |    |



最適化の結果,表面積が最小となるものは,*L* =  $S, \theta_r = \pi/6, r = 0$ のときで,歪エネルギーが最小となるのは,*n*が7から10と12までは $S = 0, \theta_r = \pi/6, r = 0$ のときであった.一方で*n*が11と13から17の場合は,実際には*S*は下限値をとることができ,その時に歪みエネルギーは最小となるのだが,*S* = 0とは異なる解に収束した.これらのケースにおいて,



歪エネルギーが大きく従属する S/L のパラメーター を変化させたとき, 歪エネルギーが単調減少したが, 前述の収束解からは増加に転じ, S=0 の場合に不連続 に最小値をとることを確認した.このことから,  $S \neq 0$ の解は局所的最適解であると判断される.また,表面 積が最小となる場合,パレート解が連続しない理由と しては, S, r, rの反対側の辺は節点間の距離が極端に



小さくならないような処理を解析中で施しているため と考えられる.

## **4.** まとめ

GA を使って,折版構造の剛性と表面積の相関関係 を考察することができた.表面積と歪エネルギーはト レードオフの関係であり、今回扱った設計変数下で最 適化を行うと、列数によっては、歪エネルギーは局所 最適解を持つことが分かった.

#### 5. 今後の展望

本研究では、直線上に同じパターンの繰り返しによ り構成されているモデルのみを扱ったが、斜め方向に 繰り返すことでずらす,円弧状にするなどの操作で形 状にもう少し自由度を持たせることも可能と考えられ る.また、今回の解析では1つのパネルに対して1つ の有限要素で解析をおこなっていたが、解析精度の観 点から,有限要素分割の細分化を行う必要があると思 われる.また,CLT パネルに限らず,木質構造物は全 体剛性に対する接合部の剛性の影響が大きいが,今回 の解析モデルでは接合部は無視して連続体として扱っ ているため、剛性のより正確な評価のためには接合部 ばねをモデル化する必要があると考えられる.本研究 では支持点はピン支持として水平方向変位は拘束され ているが、基礎の作り方次第ではスラスト力の影響が 無視できなくなるため,支点反力をコントロールでき るような仕組み作りも必要と考えられる. その他, 将 来的に折り畳みを可能とするような構造への展開を考 えた際には、折り畳み時の部材の重なりの検討などが 今後の課題としてあげられる.

#### [参考文献]

- 古田陽介,木本晴夫,三谷純.マウスによる仮想折紙の対話的操 作のための計算モデルとインターフェース.情報処理学会論文誌, Vol. 48, pp. 3658–3669, 2007.
- Tomohiro Tachi. Freeform origami, www.tsg.ne.jp/TT/ software/. (accessed 2020-06-20).
- 3)藤田慎之輔,松本匡弘,福田展淳,茨田一平. CLT 折版構造で構成される木質大空間の構造デザイン. コロキウム構造形態の解析と創生 2019, 2019.11.
- D. Rutten. Grasshopper -computing architectural concepts-. the conference Advances in Architectural Geometry, Vienna, Austria, pp. 18– 21, 2010.9.
- M. Makki, M. Showkatbakhsh, and Y. Song. Wallacei an evolutionary multi-objective optimization and analytic engine for grasshopper 3d-, https://www.wallacei.com/. (accessed 2020-06-20).