環境評価と力学的性能を考慮した壁配置最適化 Optimization of Wall Arrangement Considering Environmental Assessment and Mechanical Performance

○小南 修一郎^{*1},藤田 慎之輔^{*2}
 Shuichiro KOMINAMI^{*1}, Shinnosuke FUJITA^{*2}

*1 北九州市立大学大学院 国際環境工学研究科 大学院生

Graduate Student, Faculty of Environmental Engineering, The University of Kitakyushu *2 北九州市立大学大学院 国際環境工学研究科 准教授

Assoc. Prof., Faculty of Environmental Engineering, The University of Kitakyushu, Dr. Eng.

キーワード:壁配置最適化; Grasshopper; シェル構造 Keywords: Optimization of the wall arrangement; grasshopper; shell structure

1. はじめに

シェルなどの大スパン構造物は,形状のみならず境界 条件の差異によってもその力学性状は大きく変化する. 既往の研究では,シェル屋根に対して柱配置の最適化を することによる力学的性能の評価を行っている.¹⁾

本研究では, RC 建物の壁配置最適化を行う. 壁の配 置は,力学性状に影響を与えると同時に,建物空間の環 境にも影響を与える.そこで,力学的性能を示すひずみ エネルギーと環境評価を示す日射取得量の多目的最適化 を行い,得られた結果を考察する.

2. 理論準備

2.1. 壁配置の表現

シェル屋根は全部で *n* 個の壁に支持されるものとし, 屋根を構成する四辺形シェル要素の各辺に 1~*n* までの 番号付けをした後,長さ *n* の整数変数ベクトル *t* を定義 する.

$$\boldsymbol{t} = \begin{pmatrix} t_1 & \cdots & t_{\bar{n}} \end{pmatrix}^\top \quad t_i \in \{1, \cdots, n\} \quad i = 1, \cdots, n$$
(1)

tはシェル屋根を支える壁配置を表し, $t_i=j$ のとき辺番 = jに壁が存在するものとする.

日本建築学会情報システム技術委員会

第44回情報・システム・利用・技術シンポジウム論文集,411-414,2021年12月,京都 Proceedings of the 44th Symposium on Computer Technology of Information, Systems and Applications, AIJ, 411-414, Dec., 2021, Kyoto 2.2. 環境評価の表現方法

本研究では、環境評価の指標として日射取得量を用 いる.その際、Grasshopperのコンポーネントである Ladybugにより、日射取得量を算出する.観測値は下関 とし、観測時期は冬(11月1日0時~3月31日23時) とし、日射取得量は最大化することとする.観測範囲は 建物床面とし、1m×1mのグリッドごとに値を算出す る.観測されるグリッド数をuとする.本研究で目的関 数とする値は、各グリッドごとに算出される日射取得量 \bar{I} の総和とする.図2に本研究のモデルに対する方角を 示す.

3. 最適化問題の定式化

本研究では、ひずみエネルギーと日射取得量の双方 を目的関数とした多目的最適化を行う.長期荷重時の ひずみエネルギーを f_L , X, Y 方向地震時のひずみ エネルギーをそれぞれ f_X , f_Y とする.弾性解析には OpenSees²⁾を用いる.地震時水平力は、面荷重 + 自重の 鉛直荷重 $w_i(i = 1, \dots, n)$ と設定した水平震度 K の積 K w_i を、各節点重量に応じて X,Y 方向にそれぞれ作用 させるものとする.本研究では設計変数を $X = t^{\top}$ と

 $S = f_L + f_X + f_Y$ minimize $-I = \sum^{u} \overline{I}_i$ $|\boldsymbol{t}_i - \boldsymbol{t}_j| \le 2, \quad i, j = 0, \cdots, n/2$ subject to $|\boldsymbol{t}_i - \boldsymbol{t}_j| \le 2, \quad i, j = n/2, \cdots, n$ $t_i \neq t_j \quad i, j = 0, \cdots, n$ $S \leq \bar{S}$ (2)

最適化計算には遺伝的アルゴリズムによる多目的最適 化を行うことのできる Grasshopper のコンポーネントで ある Wallacei³⁾ を用いる. Wallacei は最小化問題のみに 対応しているため、日射取得量には -1 を掛けることで 最大化することとする.本研究では、制約として壁が連 続して配置できる数を2枚までとし,選択する位置が重 複しないものとする.選択された梁番号が n/2 以下の壁 の枚数を e1, n/2 以降の壁の枚数を e2 とする. また, 明 らかに剛性の低い壁配置の発生を防ぐため、最適化後の ひずみエネルギー S は解析モデルのひずみエネルギー \bar{S} よりも小さいものとする.

4. 解析モデル

本研究では、壁数の違いによる結果の比較を行うため 2種類の解析モデルを用意する.屋根と壁ともに鉄筋コ ンクリートを想定したモデルとする. モデルの平面形 状は 20m×20m の正方形平面としシェル屋根および壁は 表1に示す材料及び断面を有するものとする. 解析モ デルにおけるひずみエネルギーおよび日射取得量を表 2に示す.荷重条件は,鉛直荷重は自重に加えて鉛直下 向きに面荷重 1kN/m² を、地震時水平力については水平 震度 K=0.3 とした集中荷重をそれぞれ作用させること とする. すべての解析において Wallacei の計算回数は GenerationSize を 50,GenerationCount を 150 とする.

モデル 2(壁 10 枚) 図 4

材料物性情報

衣 I 的科彻住情報							
			ヤング係数 E[kN/m²]	ポアソン比	重量密度	[kN/m³]
屋根,	壁	(RC)	2.10 ×	10^{7}	0.2	24	

表 2 ひすみエネルキー値およひ日射取得

	$f_L + f_X + f_Y[kNm]$	f_L [kNm]	f_X [kNm]	$f_Y[kNm]$	日射取得量
モデル 1	16.967	16.553	0.005	0.409	27843
モデル 2	0.78	0.75	0.015	0.022	25765

5. 壁配置最適化

5.1. ひずみエネルギーを目的関数とした壁配置最適化

最適化問題(2)を Wallacei により解く. モデル1の最 適化後の柱配置および日射量を図5に,モデル2の最適 化後の柱配置および日射量を図6に,最適化後のひずみ エネルギーと日射取得量を表3にそれぞれ示す.

表3 ひずみエネルギー値および日射取得量

	$f_L + f_X + f_Y$ [kNm]	f_L [kNm]	f_X [kNm]	f_Y [kNm]	日射取得量
モデル 1	0.664	0.645	0.013	0.006	30964
モデル 2	0.207	0.193	0.009	0.004	28846

5.2. 日射取得量を目的関数とした壁配置最適化

最適化問題 (2) を Wallacei により解く. モデル1の最 適化後の柱配置および日射量を図7に、モデル2の最適 化後の柱配置および日射量を図8に,最適化後のひずみ エネルギーと日射取得量を表3にそれぞれ示す.

表 4 ひずみエネルギー値および日射取得量

	$f_L + f_X + f_Y[kNm]$	$f_L[kNm]$	f_X [kNm]	f_Y [kNm]	日射取得量
モデル1	15.469	15.422	0.039	0.008	32706
モデル2	0.707	0.697	0.005	0.005	31399

5.3. ひずみエネルギーと日射取得量を目的関数とした 壁配置最適化

最適化問題(2)をWallaceiにより解く.モデル1のパ レートフロントを図9に,パレート最適解をCluster1からCluster5の5つに分類し,それぞれのClusterの中の 代表的な解における壁配置と日射量を図10,図11,図12, 図13,図14に,パレート最適解のひずみエネルギーと 日射取得量を表5に,モデル2のパレートフロントを図 15に,壁配置と日射量を図16,図17,図18,図19,図20 に,に,パレート最適解のひずみエネルギーと日射取得 量を表6にそれぞれ示す.

	$f_L + f_X + f_Y$ [kNm]	f_L [kNm]	f_X [kNm]	$f_Y[kNm]$	日射取得量
Ą	0.835	0.827	0.008	0.020	31271
B	2.732	2.727	0.002	0.003	32322
С	4.744	4.705	0.003	0.036	32470
D	5.594	5.554	0.003	0.037	32489
E	10.582	10.563	0.007	0.012	10.563

表 6 ひずみエネルギー値および日射取得量(モデル 2)

	$f_L + f_X + f_Y[kNm]$	f_L [kNm]	f_X [kNm]	f_Y [kNm]	日射取得量
A	0.248	0.233	0.011	0.004	30190
В	0.309	0.296	0.009	0.004	30576
С	0.421	0.407	0.010	0.004	31010
D	0.488	0.475	0.010	0.004	31029
E	0.613	0.599	0.010	0.004	31229

ひずみエネルギーを目的関数とすることで,ひずみエ ネルギーは大幅に減少され,日射取得量を目的関数とす ることで,日射取得量は大幅に増加していることが確認 できる.ひずみエネルギーのみを目的関数とした最適化 では,ひずみエネルギーが減少していることはもちろん 日射取得量も増加している.ひずみエネルギーを減少さ せるため壁が中心に配置されたことが要因であると考 えられる.また,ひずみエネルギーと日射取得量の多目 的最適化をすることで,剛性を高めつつ日射取得量を増 加させることができている.解析モデル1(壁6枚)の 方が日射取得量は多く,屋根中心部に配置されている. 解析モデル2(壁10枚)では,解析モデル1と比べ屋 根全体に壁が配置されている.壁の枚数を変化させるこ とで,壁の配置は全くことなる特徴が出ることが確認で きた.

6. まとめ

本研究では,設計者の求める建築形態に合わせた構造 形態を提示することを目的としているが検討課題も残っ ている.今後の展望として,壁の配置できる場所に制約 を設け,意匠性も考慮することが考えられる.また,壁 と柱を同時に配置最適化することも考えられる.

[参考文献]

- 小南修一郎,藤田慎之輔.シェル構造の柱配置と形状の同時最適化. コロキウム構造形態の解析と創生 2019, 2019.11.
- M. Zhu, F. McKenna, and M. Scott. Openseespy: Python library for the opensees finite element framework. *SoftwareX*, Vol. 7, pp. 6–11, 2018.1.
- 3) Showkatbakhsh M. Makki, M. and Y. Song. Wallacei. Wallacei, 2018.