鋼構造骨組のサロゲートモデルによる最小重量設計 応力と層間変形角の制約による検定 Minimum weight design by surrogate model of steel structural frames examination with stress and interlaminar deformation angle constraints

○石本 大和^{*1}, 横須賀 洋平^{*2}
Yamato ISHIMOTO^{*1}, Yohei YOKOSUKA^{*2}

*1 鹿児島大学大学院理工学研究科工学専攻建築学プログラム 大学院生

Graduate Student, Graduate School of Science and Engineering, Kagoshima University

*2 鹿児島大学大学院理工学研究科工学専攻建築学プログラム 准教授

Associate Professor, Graduate School of Science and Engineering, Kagoshima University, Ph.D.

キーワード:鋼構造骨組; 最小重量設計; 遺伝的アルゴリズム; ニューラルネットワーク; **Keywords:** steel structural frames; minimum weight design; genetic algorithm; neural network.

1. はじめに

近年、最適化や機械学習のような計算機を用いた意思決 定プロセスによる設計例が増えつつある。建築構造の設計 において、構造部材の総重量や部材配置、設計形状等の最 適化は、これまでに数多くの研究が報告されている¹⁾。し かし、最適化を大規模建築物に適用すると計算コストが増 大する傾向にある。そこで、最適化問題に機械学習やサロ ゲートモデルを適用することにより、計算コストを削減し つつ近似的な最適解の効率的な獲得を行う研究が行われ ている²⁾。サロゲートモデルは、数値解析を実行する代わ りに応答や目的関数値を近似したモデルのことである。

本研究では、サロゲートモデルとしてニューラルネット ワーク(Neural Network:NN)、最適化手法に遺伝的アルゴ リズム(Genetic Algorithm:GA)を採用し、効率的に最小重 量問題を解くことを目的とする。本稿では、二次元鋼構造 骨組を対象とし、ブレース配置と部材断面の同時最適化問 題とする。NN は制約条件の検定結果を判断する分類問題 を扱ったモデルを構築する。さらに提案手法の最適解や解 空間の近似精度を検証することを目的とする

2. 機械学習と構造最適化

機械学習は教師あり学習、教師なし学習と強化学習の3 つに大別される。さらに、教師あり学習は、数値を予測す る回帰問題と、所属するクラスを分類する分類問題が存在 する。機械学習では一度機械学習モデルが構築されれば、 高速に推定値や予測ラベルを出力することができる。一方、 最適化問題においては、数理計画法と発見的手法に大別さ れ、発見的手法は目的関数値の微分計算が不要で、かつ大 域的最適解が得られるが、多点探索による有限要素解析を 実行する場合には、膨大な計算コストを必要とする。

機械学習と最適化を組み合わせた構造最適化では、教師

日本建築学会情報システム技術委員会

あり学習の回帰問題を扱うことが多い。しかし、NN の学習 では、目的関数値に複数の応答を含み、出力値の数が膨大 である場合や、出力値のばらつきが大きい場合は推定精度 が悪化する可能性がある。一方で、重量を目的関数とする 最小重量設計では、応答が目的関数に含まれる必要がなく 制約条件の検定結果のみで最適化問題を解くことができ る。本稿では、部材応力や層間変形角の制約条件の検定結 果を判断する分類器として NN を用いたサロゲートモデル を構築する。以下に提案手法の計算フローを示す。

3. 最適化問題の概要

3.1 最適化の定式化

解析モデルは柱・ブレース部材が角型鋼管、梁部材が H 形鋼からなる骨組架構として、図 2 に示すスパン 9.6m、階 高 4m(一部 5m)を有する最大 8 層 3 スパンの鋼構造骨組で ある。層数を 3 層から 8 層まで変化させ、それぞれの規模 について最適化を行う。柱・梁部材は表 1 のものを用い各 層に使用する部材は規模ごとに表 2 に示す部材番号のもの とする。これらは、長期許容応力度設計を満足するように 設定されている。ブレース部材は表 3,4 に示す部材リスト から選択される。ブレース部材が存在しない断面をリスト に追加することで、配置と断面の同時最適化を実施する。 また、ブレース部材の各リストの選択率は、同時最適化を 考慮し、リスト番号 1:50%、リスト番号 2-8:7.143%と重 み付けを行い、対象形状を得るために対象条件を考慮する。 モデルの解析には有限要素解析を用い、最適化の定式化は 以下のようになる。

第45回情報・システム・利用・技術シンポジウム論文集,116-119,2022年12月,東京 Proceedings of the 45th Symposium on Computer Technology of Information, Systems and Applications, AIJ, 116-119, Dec., 2022, Tokyo

		Ę	表1 柱梁部材断面					表2 使用部材番号										
		List number		Section		A(mm ²)	Max_St	ory	story									
	+			column	□-40	0–400–19	27100		1	2	3	4	5	6	7	8		
			I	beam	H-40	0-200-9-19	11000	3	2	2	1							
		- E		column	□-45	0-450-19	30900	4	2	2	1	1						
	1//		2	beam	H-45	0-200-9-19	11450	5	3	3	2	2	1	1				
			2 column		0-550-19	34700	0 7	3	3	2	2	1	1	1				
	$+ \times +$		3	beam	H-55	0-200-9-19	12350	8	3	3	2	2	2	1	1	1		
	\vee						<u>+</u>											
Į.				表3 ブレース部材断面(3-7層)					表4 ブレース部材断面(8層)									
9.6m 9.6m 9.6m				Brace Section			A(mm ²)		Brace Se					ection A(mm ²)				
				List	number			-	List_number									
図2 解析モデル				1		0-0-0	0		1	□-0-0-0				0				
表5 配置パターンとデータ数			_	2			2763		2	□-	-175-	175-	9	5	767			
story	Pattern	Data	_	3		150-150-6	3363		3	□-	□-200-200-9				6667			
3	64	10000	4			175–175–9	5767		4		-200-	.00-200-12			8653			
4	265 1024	265 10000		5	5		6667		5	□-250-250-12			11050					
6	4096	30000		6			8653		6	□-300-300-12			13450					
7	16384	16384 30000		7		250-250-12	11050		7	□-350-350-16				20720				
8	65536 50000		_	8		300-300-12	13450	=	8	□ □-400-400-16				23920				
		主(NNIパラ、	1_2															
			.—> 			-			XXX	1			-	~	-			
model-R			model-L		0.99	. 0.99			0.99	-								
Enoch 2000			2000			0.98	i —		0.00	0.98	-							
Batch size 1024		1024			0.9	t	-model-R-t	riall	0.97			-model-L-trial1						
損失関数 平均二乗誤差		平均二乗誤差	交差エントロピー			0.90		-model-R-t	model-R-trial2			model-L-trial						
	± 7	学习放了中の	त राज्य	の平均		0.95	;	model-R-t	rial3	0.95				—m	odel-L-	trial3		
衣/子百於」时の正合率の平均				- 111			0 500 1	1000 1500	2000		0	500	10	00	1500	2000		
99.4%						🗵 3 model-R	の正答率遷	移	3	团 4 n	nodel	L Ø)正答	字率速	퉬移			
	<i>99</i> . 4 /0			99.770														
Find		▲ b				(1)	「土庫」イ	まらた二	ナニ	<u>р ж</u> ь	リアクチ	41 × 1/	⊢⊢,	+7	⇒л	L∋1. 7/5		
i inu		A				(1) (生存思しし、	衣りに不	97	ク致	. V _ 1小	: * *1	一刀人	90	。政	可没		
to min. $f(\mathbf{A}^b) = \mathbf{L}^b$			$^{T}\mathbf{A}$			(2)	汝はブレーフ	、配置およ	:びリン	ストイ	Ľί	た断	面を	を決	定す	った		
						λ	わのカテゴリ	カルな離	散変数	であ	0	リフ	いトオ	番号	と部	はれの		

(3)

subject to

 $\theta_{k} \leq \theta^{U}$

$A^L \leq \mathbf{A}^b \leq A^U$

 $\sigma^L/v \leq \sigma_i \leq \sigma^U/v$

ここで、 A^{b} :ブレース部材の断面リスト番号、L:部材長ベクトル、A:断面積ベクトル、v(=1.5):安全率、 σ_{i} :*i*部材の 圧縮・引張・せん断・曲げ応力度、 θ_{k} :*k*層の層間変形角、 $\sigma^{L}, \sigma^{U}, \theta^{U}, A^{L}, A^{U}$:側面制約であり、 A^{L} =1, A^{U} =8, θ^{U} =1/200 である。応力制約は短期許容応力度とし、圧縮応力度につ いては、細長比により決定される座屈を考慮した鋼構造設 計基準式を用いる。外力として、地震力を Ai 分布に従っ て作用させる。設計床荷重は各階とも 7.84kN/m² であり、 桁行方向は 6.4m を想定する。地震力算定の条件は第二種 地盤 Z=1.0、振動特性係数 R_t=1.0、標準せん断力係数 C₀=0.2 として地震層せん断力から算定した水平荷重を負担面積 に応じて各節点に作用させる。

3.2 サロゲートモデル

NNの入力値xを設計変数とし、3-8層分のデータを同時 に学習し、同一のNNにより各規模での最適化を実施する。 学習データセットは層数に応じたブレース配置パターン 数はブレース配置およびリスト化した断面を決定するためのカテゴリカルな離散変数であり、リスト番号と部材の 断面性能に直接的な関係がないため、ダミー変数を用いて {0,1}の2値の配列に変換する。

4. 回帰モデルと分類モデルの比較

4.1 作成するモデル

回帰モデルを model-R、分類モデルを model-L とし、各々 学習データの教師信号を t_{R}, t_{L} とし、次式で定義する。

$$\mathbf{t}_{R} = \begin{bmatrix} \frac{\sigma_{i}}{f_{i}} &, \frac{\theta_{k}}{1/200} \end{bmatrix}$$
(検定比) (4)
$$\mathbf{t}_{L} = \begin{cases} 1 & if \quad t_{R,j} \ge 1.0 \\ 0 & otherwise \end{cases}$$
(制約条件の検定) (5)

学習データの生成は、10%以上が許容解、非許容解となる ように設定し、かつ重複するデータがないように作成する。 4.2 NN の学習結果と考察

表 6 に示すパラメータで 2 つの NN モデルの学習を行う。損失関数は、model-R は平均二乗誤差、model-L は交差 エントロピー誤差を用いて、式(6),(7)により定義する。

$$E_{\rm R}(w) = \frac{1}{N} \sum_{j=1}^{N} (y_j - t_{{\rm R},j})^2$$
(6)

$$E_{\rm L}(w) = -\sum_{j=1}^{N} \left(t_{{\rm L},j} \log y_j + \left(1 - t_{{\rm L},j}\right) \log\left(1 - y_j\right) \right)$$
(7)

ここで、N: 出力値の数、y: 出力値である。

学習結果としてそれぞれ3試行ずつ学習を行い、図3,4 に学習時の100 epochごとの検証データの正答率、表7に 学習終了時の正答率を示す。正答率は、許容解を許容解、 非許容解を非許容解と正確に判定したデータの割合とし て定義している。

表7よりNNを分類器として用いた場合、検定比の予測 をした場合と同程度以上の正答率を得られた。また、正答 率の遷移では、model-Rでは振動がみられるが、model-Lで は安定した正答率を示している。これは、回帰モデルでは 検定比の最小値が0.0で最大値は10.0を超えている場合が あり、その影響があると考える。正答率の遷移に振動が見 られる場合は、学習の終了判定次第で正答率が低いモデル になる可能性もあるため、制約条件の検定結果をNNによ る分類によって予測する手法は有効であることが判る。

5.学習データセットの許容解比率による比較

5.1 モデルの作成

本節では、学習データセット内の許容解、非許容解の割 合の違いによる学習結果の比較を行うため、以下の3つの データを用意する。学習データセット生成において、Datao は設計変数をランダムに作成したデータとし、Datas、Data10 は各々、許容解が5%、10%以上となるように作成したデー タセットとする。

5.2 NN の学習結果と考察

表 8 に示すパラメータで 3 つの NN モデルの学習を行 う。学習結果として、図 5 に学習時の 1 epoch ごとの損失 関数値の遷移を、表 9 に学習終了時の検証データの正答率 を示す。検証用データセットは、許容解:非許容解が 1:1 と なるように作成したデータを用いる。表 10 に学習データ セットの作成時の計算コストを Datao に対する割合で示す。

表9よりランダムの場合よりデータセット内の許容解の 割合を指定したうえで、学習データセットを作成した場合 の方が推定精度の高いモデルを構築できることが判る。こ れは、ランダムに作成した学習データセットは許容解の比 率が極端に小さくサンプルが少なくなるため、許容解を表 すデータの学習がうまく行われず、殆どの変数で非許容解 と判定される NN モデルが構築されたためである。

Datas と Data10 の比較では、Datas の作成コストは Data10 に対して6割程度であるが、正答率は同程度になっている ため学習データセット内の許容解の割合は5%で十分であ ると考えられる。

6. 出力層のサイズによる比較

6.1 モデルの作成

本節では、NN 学習の際に、検定に用いる部材や条件を グルーピングし、出力値 y を圧縮することで出力層のユニ ット数を変化させる。以下に示す3つのモデルを作成する。 すべての部材でそれぞれの制約条件に対して個別に判定 する出力層ユニット数296 個のモデルをUnit206 とし、Unit22、 Units は各々、各層でそれぞれの制約条件を判定する出力層 ユニット数32 個のモデル、各層ですべての制約条件を判 定する出力層ユニット数8 個のモデルである。

6.2 NN の学習結果と考察

表 11 に示すパラメータで 3 つの NN モデルの学習を行 う。出力層のユニット数に対応させて中間層のユニット数 を増減させる。学習データセットには、Datasを用いる。学 習結果として、図 6 に学習時の 1 epoch ごとの損失関数値 の遷移、表 12 に学習終了時の正答率を示す。また表 13 に は各モデルの学習時の計算コストを Unit296 に対する割合 で示す。

図6より、損失関数値はUnit296が最も小さな値に収束していることが判る。学習終了時の正答率はUnit296とUnit32では同程度になっている。一般にNNは損失関数値が小さな値で収束するほど精度が高くなるが、出力層のユニット数がある一定以上であれば、ユニット数が検定の精度に影

図 7 解形状

響を与えないことが判る。学習コストについては、ユニット数に応じて変化しており、Unit296が最も大きな値になっている。

7. GA を用いた最適化

7.1 FEM による最適化とサロゲートモデルによる最適化

解析モデルの 3-8 層を規模ごとに最適化を行う。ここで 制約条件の検定に有限要素解析を用いる場合(GA-FEM)と NN の予測を用いる場合(GA-NN)をそれぞれ 3 試行行う。 NN には Datas で学習した Unit₃₂ のモデルを用いる。また各 規模での GA パラメータは表 14 に示すものを用いる。 7.2 数値結果と考察

最適化の結果として図7に得られた解形状を部材断面積 と線の太さを対応させて示す。また、GA-NNにより得られ た解形状については、有限要素解析により制約条件を満た さない部材を赤色で表している。

GA-NN で得られた解形状は 3-5 層の場合は GA-FEM と 同一の結果が得られている。しかし 6-8 層では GA-NN の 目的関数値は GA-FEM よりも小さな値になっており制約 条件を満たしていない部材が存在する解が得られている。 NN で本来非許容解であるものが許容解であると危険側の 誤った予測がされることがある。この結果より、高い正答 率であるにもかかわらず最適解の近傍では誤答しやすい ことが判る。6-8 層の場合では、制約条件を満たすには、 多くのブレースが必要となり解空間が複雑なものになっ ている影響であると考えられる。

表 15 は各計算コストを規模ごとに GA-FEM に対する割 合で表したものである。Data, Learning, Total は各々データ セット作成、NNの学習、Data・Learning・GA-NNを合計 した計算コストを意味している。GA-FEMと比較して、GA-NNの計算コストは小さく、高速で解を得ることができた。 低層の解析モデルについてはデータセットの作成コスト が非常に大きな割合となっている。規模によっては Total の計算コストが GA-FEM よりも大きな値になるが、一度 の学習で異なる規模の最適化が可能であることは、計算コ ストの観点において優位であると考える。

8. まとめ

本稿では、サロゲートモデルを用いてブレース部材配 置・断面の同時最適化を行った。NNの同時学習では高い 正答率を得ることができたが、GA-NNで得られた解は非 許容解であり、危険側の誤った近似解になることが判った。 今後は、安全率として検定比を割り増ししたデータセット による学習を行うなど、GA-NNによる最適化での危険側 の予測をなくす手法の模索を行っていく必要がある。

[参考文献]

- 三井和男,大崎純,大森博司,田川浩,本間俊雄:発見的最適化 手法による構造フォルムとシステム計算工学シリーズ 4, コロナ社,2004
- 2) 田村拓也,大崎純,高木次郎,:機械学習を用いた鋼構造骨組 のブレース配置の分析,日本建築学会近畿支部研究発表会, 57, pp.83-84, 2017
- 3) 久住呂大志,横須賀洋平,本間俊雄:ニューラルネットワークによるサロゲートモデルを用いた構造最適化-2次元橋梁 モデルの曲げひずみエネルギ最小化-情報シンポ 2021,pp.323-326,2021
- 本間俊雄,野端憲太:解の多様性を考慮した遺伝的アルゴリズムによる構造形態の創生,日本建築学会構造系論文集,614, pp35-43,2007