機械学習を用いた構造物の動的応答予測と経済性を考慮した 規格部材配置最適化 Dynamic Response Prediction of Structures Using Machine Learning and Optimization of Standard Member Arrangement Considering Economics

○新田 広^{*1},藤田 慎之輔^{*2}
Hiroshi NITTA^{*1}, Shinnosuke FUJITA^{*2}

*1 北九州市立大学大学院 国際環境工学研究科 大学院生

Graduate Student, Faculity of Environmental Engineering, The University of Kitakyushu

*2 北九州市立大学大学院 国際環境工学研究科 准教授

Assoc. Prof., Faculity of Environmental Engineering, The University of Kitakyushu, Dr. Eng.

キーワード:時刻歴応答解析;ニューラルネットワーク;発見的手法 Keywords: Time history response analysis; Neural Network; Meta-heuristics.

1. はじめに

地震大国の日本において,時刻歴応答解析を用いた耐 震設計は重要事項である.しかし,設計実務において, どういった構造形式が適切で合理的かを,限られた時間 内に正確に捉えることは、時刻歴応答解析に伴う計算コ ストの面から困難であり、設計者の経験的な判断に頼る ことが大きい.そういった建築設計問題を改善し,設計 者の判断の補助的役割を担う方法として最適化手法の活 用が挙げられる¹⁾.しかし、建築構造の最適化は一般 的に解析負荷が高く、計算時間の短縮と解の収束性を担 保するために様々な工夫を要する. 振動解析においても 最適化手法を活用するにあたり,応答値を時刻歴応答解 析により算定する必要がある.しかし,先程述べたよう に,時刻歴応答解析は時間軸に対する繰り返し計算を伴 うため、その都度時刻歴応答解析を行うことは計算コス トの観点からも、実務における設計スケジュールの観点 からも現実的でない. そこで本研究では,時刻歴応答解 析を行わずに応答値を推定するために、機械学習による 予測システムに置き換えることで、現実的な計算時間で の経済性を考慮した鋼材の規格部材配置最適化を行う.

2. ビッグデータ作成

本研究では,膨大な数の解析モデルを用意し,オープン ソースの構造解析ソフトとして知られている Opensees²⁾ を用いて時刻歴応答解析を行う.解析モデルの形状は図 1 に示すように,6層6スパンの平面骨組を考える.梁 は剛体として扱い,柱は表1にある規格断面リストの中 から式(1)の規則で選択される.各層で選択される鋼材 の規格断面番号を $L_e(e=1,\cdots,6)$, 階数をnとおくと,

$$\boldsymbol{L} = \begin{cases} L_1 = d_1 & \text{if } d_1 = 15, \cdots, 35 \\ \vdots & (1) \\ L_e = d_{n-1} - d_n & \text{if } d_n = 0, \cdots, 5 \\ d_1 - \left(\sum_{i=2}^n d_n\right) \ge 0 & (2) \end{cases}$$

となり、剛性 K は、各層で使用される鋼材の断面二次 モーメントを I_{L_e} とおくと、

$$\boldsymbol{K} = \frac{12E}{h^3} \begin{bmatrix} I_{L_1} & \cdots & I_{L_e} \end{bmatrix}^\top$$
(3)

となる.

建物重量は各層 1500kN に設定し、時刻歴応答解析を 実施するにあたり、部材の塑性化は考慮しないものと し、入力地震動の時刻歴加速度データは、El centro NS, Hachinohe NS, Taft NS の最大速度を 50kine で基準化し たもののいずれかを作用させる.

$$\boldsymbol{A}_{\max} = \begin{cases} A_{\max}^{\text{El centro NS}} \\ A_{\max}^{\text{Hachinohe NS}} \\ A_{\max}^{\text{Taft NS}} \end{cases}$$
(4)

第45回情報・システム・利用・技術シンポジウム論文集,156-159,2022年12月,東京 Proceedings of the 45th Symposium on Computer Technology of Information, Systems and Applications, AIJ, 156-159, Dec., 2022, Tokyo

図 2: 入力地震動

番号	寸法	厚み	断面積	断面二次モーメント						
	B×D(mm)	t(mm)	A(cm ²)	I (×10 ⁻⁴ m ⁴)						
1	0.25×0.25	0.006	0.05856	0.581						
2	0.25×0.25	0.009	0.08676	0.841						
3	0.25×0.25	0.0012	0.11424	1.081						
4	0.25×0.25	0.0016	0.14976	1.373						
5	0.30×0.30	0.006	0.07056	1.017						
6	0.30×0.30	0.009	0.10476	1.480						
7	0.30×0.30	0.012	0.13824	1.914						
8	0.30×0.30	0.016	0.18176	2.451						
9	0.30×0.30	0.019	0.21356	2.823						
10	0.35×0.35	0.009	0.12276	2.381						
11	0.35×0.35	0.012	0.16224	3.093						
12	0.35×0.35	0.016	0.21376	3.983						
13	0.35×0.35	0.019	0.25156	4.609						
14	0.35×0.35	0.022	0.28864	5.199						
15	0.40×0.40	0.009	0.14076	3.588						
16	0.40×0.40	0.012	0.18624	4.677						
17	0.40×0.40	0.016	0.24576	6.050						
18	0.40×0.40	0.019	0.28965	7.023						
19	0.40×0.40	0.022	0.33264	7.948						
20	0.40×0.40	0.025	0.37500	8.828						
21	0.45×0.45	0.012	0.21024	6.727						
22	0.45×0.45	0.016	0.27776	8.731						
23	0.45×0.45	0.019	0.32756	10.16						
24	0.45×0.45	0.022	0.37664	11.53						
25	0.45×0.45	0.025	0.42500	12.84						
26	0.50×0.50	0.012	0.23424	9.303						
27	0.50×0.50	0.016	0.30976	12.11						
28	0.50×0.50	0.019	0.36556	14.12						
29	0.50×0.50	0.022	0.42064	16.05						
31	0.50×0.50	0.025	0.47500	17.91						
32	0.55×0.55	0.016	0.34176	16.26						
33	0.55×0.55	0.019	0.40356	18.99						
34	0.55×0.55	0.022	0.46464	21.63						
35	0.55×0.55	0.025	0.52500	24.17						

表 1: 角形鋼管の規格断面リスト

このように,各層の柱に使用する鋼材の規格断面,入 力地震動をランダムに組み合わせた解析モデルを合計 10万種類作成し、時刻歴応答解析を行う.

3. ニューラルネットワーク回帰

解析モデルの応答値を予測するためにニューラルネッ トワークを用いる.ニューラルネットワークの基本構造 は図3のように微分可能な変換をつなげて作られた計 算グラフである³⁾.計算過程の例として,入力層と第一 中間層における計算過程を示す.入力層の説明変数を*n* 個、中間層のニューロン数を N 個、中間層のノードの個数を k 個とすると、

$$u_1 = W_1 h_0 \tag{5a}$$

$$\boldsymbol{u_1} = \begin{bmatrix} u_{11} & \cdots & u_{1k} \end{bmatrix}^\top \tag{5b}$$

$$\boldsymbol{W_1} = \begin{vmatrix} w_{1,11} & \cdots & w_{1,1n} \\ \vdots & \ddots & \vdots \\ w_{1,k1} & \cdots & w_{1,kn} \end{vmatrix}$$
(5c)

$$\boldsymbol{h_0} = \begin{bmatrix} h_{01} & \cdots & h_{0n} \end{bmatrix}^{\top}$$
(5d)

と表すことが出来る. h_0 は入力層の入力変数ベクトル を示しており,式(1~3)で示した各特徴量のスカラー となる. W_1 は一層分のパラメータベクトル, u_1 は第 一層中間出力ベクトルである. ここで式(5)より算出さ れた u_1 は活性化関数で変換され,出力データ y を算出 するまで式(5)を繰り返す.ニューロン数 N は入出力関 係の汎化能力に十分な個数を,試行錯誤的なシュミレー ションで決定する場合が大半であるため, N = 1,...4の間で任意に設定され,ユニット数 k は多めに持たせて おき徐々に減らしていく学習方法が適切である. 活性化 関数は 0 より大きければそのまま,0 より小さければ 0 に置き換えて出力する Relu,最適化手法には,極小値に トラップされること無く最小値を目指すためのアプロー チである adam を使用し 4^{0} ,損失関数は mse(平均二乗誤 差),評価関数は mae(平均絶対誤差)を用いる.

4. 機械学習による動的応答予測

機械学習を実施するにあたり、10万個のビッグデータ の中から、8万個の学習モデルと2万個の予測モデルを 作成した.また、ニューラルネットワーク回帰を行うに あたってN = 4, k = 128 で固定し、バッチサイズ=16、 32、64、128、エポック数=100、150、200、250 と調整しな がら学習を行う.また、時刻歴応答解析を実施して算出 した各層の最大応答変位である解析値 $\lambda_e(e = 1, \dots, 6)$ と、予測モデルを用いて算出した各層の最大応答変位で ある予測値 $\lambda_{p,e}$ との比較を行い予測モデルの精度を検 証する. 以下に機械学習を実施するにあたって設定したパラ メータ値の中で最適な設定とその正解率を表 2 に示す. 正解率とは 2 万個の予測モデルに対する $\lambda_{\rm p,e}/\lambda_e$ のクラ イテリア誤差を ±20% 以内, つまり $0.8 \le \lambda_{\rm p,e}/\lambda_e \le 1.2$ と設定した値に収まっている割合を指す.

表 2: パラメータごとの最適な設定と正解率

バッチサイブ	エポック数	上下 20% 正解率 (%)						
797912		層 1	層 2	層 3	層 4	層 5	層 6	
16	150	93.90	98.99	99.59	99.67	99.78	99.75	
32	200	98.15	99.52	99.77	99.83	99.81	99.85	
64	100	98.00	99.56	99.71	99.69	99.74	99.79	
128	200	99.30	99.81	99.86	99.86	99.86	99.85	

以上の表から, バッチサイズ=128, エポック数=200 と した時の精度が安定して高いことがわかる. このときの 誤差の収束過程を図4に示し, 予測結果を図5に示す.

図 5: バッチサイズ=16, エポック数=100の予測結果

図4を見ると、繰り返し計算が進むに連れて誤差が収 束している事がわかる.また、収束過程において、小刻 みに振動しているが発散していないためノイズの影響を 受けながらも学習は成功していると考えられる.図5を 見ると、 $\lambda_{p,e}/\lambda_e$ は概ね上下 20% 以内に収まっているこ とがわかり、予測精度も良好のため、この予測器を用い て鋼材の配置最適化問題を行う.

5. 最適化問題の定式化

本研究で扱う構造物の規格部材配置最適化問題の概要 を示す.

minimize
$$\sum_{e=1}^{n} A_{L_e} \cdot h$$
 (6a)

subject to
$$\frac{\lambda_{p,e} - \lambda_{p,e-1}}{h} \le 1/100$$
 (6b)

$$d_1 - (\sum_{i=2}^n d_n) \ge 0$$
 (6c)

ALe: : 各層で使用される鋼材の断面積

h : 階高

n : 階数

 λ_e : 最大応答変位の解析値

 $\lambda_{\mathbf{p},e}$: 最大応答変位の予測値

定式化した最適化問題は MIDACO⁵⁾ を用い, 繰り返し計 算回数を 20 万回行った.計算機は Intel(R)Core(TM)i7-7700K@4.20GHz の CPU を持つものを使用する.

6. 解析結果

最適化における初期値は、体積が最大となるように設 定し最適化を行う.以下に繰り返し計算を 20 万回行っ た際の目的関数の収束履歴を示す.

図6を見ると、各地震波に対して目的関数は収束して いることがわかる.計算コストに関しては、予測モデル を用いた場合の最適化時間は4974秒であり、1度の解 析時間に約20秒費やす時刻歴応答解析をその都度行う より、効率が良いことは明らかである. 最適化後の鋼材配置図を図7に示す.また,この時の 解析値と予測値との比較を各層の最大応答変位(図8), 層間変形角(図9)として示し,予測器の有用性を検討 する.

図 8, 図 9 を見ると,解析値に対する予測値の誤差が 少なく,制約条件も満たしており,良好な結果を示して いることがわかる.なお,本研究では,ビッグデータの 数を 10 万に設定した上で予測モデルを作成しており, クライテリア誤差を±20%以内に収まっている割合を 正解値として予測モデルの精度を判定しているため,正 解値に対して多少の誤差は許容できるものとしており, 実際に図 8 の (a)では,予測値が正解値に対して過小評 価している点がいくつか見られる.構造設計実務におい て,建物の耐力を安全側に検討することが考えられるた め,設計者判断により,クライテリア誤差を厳しくする などして,より精度の良い予測モデルを使用し,正解値 に対する予測値の誤差を厳しくすることが実務上有用な 予測モデルの使用方法だと考える.

7. 結論

本研究では,機械学習を用いて時刻歴応答解析を実施 することなく,解析モデルの応答を予測できる予測モデ ルを使用し,経済性を考慮した解析モデルの規格部材配 置最適化を行った.以下に得られた知見まとめる.

応答予測に関しては,エポック数とバッチサイズの兼 ね合いにより予測精度が決定されるため,それぞれのパ ラメータを変化させることによる予測精度の結果をまと めたところ,予測精度は良好な値を示しており,外れ値 も2倍程度で収まっていることがわかる.しかし,解析 値に対する予測値の誤差が生じるているため,教師デー タをさらに増やすことで,予測精度を向上し,誤差を低 減する事が可能だと考える.

部材配置最適化においては,目的関数の収束もみら れ,制約を満たした上での経済性の高い設計が可能だと 言える.また,予測器を使用したことによる計算時間の 大幅な削減に伴い,設計期間中に十分なトライアンドエ ラーの機会を十分に確保ができる考える.

今後の展望として,予測モデルを用いた最適化を行う にあたって,鋼材の組み合わせだけでなく,免・制振デ バイスを使用した場合での経済性を考慮した組み合わせ 最適化を行うことが考えられる.

8. 謝辞

本研究の一部は JSPS 科研費 22K04416 の助成を受け たものである.ここに記して謝意を表する.

[参考文献]

- 1) 日本設計.構造設計実務における最適化を用いた設計法の提案.日本建築学会大会学術講演梗概集, pp. 275–276, 2020.9.
- M. Zhu, F. McKenna, and M. Scott. Openseespy: Python library for the opensees finite element framework. *SoftwareX*, Vol. 7, pp. 6–11, 2018.1.
- 3) Seth Weidman. *Deep Learning from Scratch: Building with python from First Principles.* Oreilly Associates Inc, 2019.09.
- Diederik P Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. 3rd International Conference on Learning Representations, ICLR2015, 2015.
- 5) M. Schlueter, J. A. Egea, and J. R. Banga. Extended ant colony optimization for non-convex mixed integer nonlinear programming. *Computers & Operations Research*, Vol. 36, No. 7, pp. 2217–2229, 2008.8.