建設業における多目的設計探査の応用 Multi-objective Design Exploration in Construction

○今関 修^{*1},石田 雅利^{*1},城戸 大輝^{*2}
 Osamu IMAZEKI^{*1},Masatoshi ISHIDA^{*1} and Daiki KIDO^{*2}

*1 鹿島建設株式会社 技術研究所

Technical Research Institute, Kajima Corporation.

*2 鹿島建設株式会社 建築設計本部

Architectural Design Division, Kajima Corporation.

キーワード:設計探査; 最適化;シミュレーション; 建築計画; RC ドーム; 建設コスト **Keywords:** design exploration; optimization; simulation; architectural planning; RCdome; construction cost.

1. はじめに

近年、様々な最適化手法を組み合わせて効果的に多目的 設計探査を行える市販ソフトウェアが開発され、自動車や 航空宇宙業界では設計探査に適用することによって設計 プロセスの合理化を実現している。また設計探査を応用し て新たな知見獲得の可能性も期待できるようになった。 建築設計や構造設計において多目的設計探査を活用し業 務の効率化を行うシステムを構築したので,これらシステ ムの概要と事例を報告する。建築設計の事例では,空間見 通しを定量的に把握できるシミュレーションツールと最 適化手法を組み合わせて多目的設計探査を行い,効率よく 意図した設計候補を絞り込める仕組みを紹介する。また, 構造設計の事例では,ドーム型サイロの地震荷重に対する 建設コストが最小となるような多目的設計探査の事例を 紹介する。

2. 多目的設計探查

多目的設計探査は、多目的最適化によって求めようとす るものの相互のトレードオフの関係から,設計者が選好解 を見つけ出せるようにすることを支援する方法である。設 計者は設計思考を行う場合,性能向上やコスト削減などの 条件で多くのシミュレーションを行い、トレードオフを考 慮しながら最適な設計案を考案している。この思考は多目 的設計探査の過程と同様である。そのため, 複合領域最適 化ツール HEEDS® (Siemens Digital Industries Software 社製の登録商標)によって設計思考を自動化して設計検討 の効率化を行った。HEEDS は SHERPA¹⁾という最適化アルゴ リズムを使っている。SHERPA は、さまざまな探査アルゴリ ズムを自動で組み合わせる自律学習型最適化手法という 独自探査アルゴリズムによって, 大域的探索と局所探索を 組合せ少ない計算回数で最適解を見つける。扱える設計変 数に制限はない。また必要な設定パラメータは計算回数の みになるので最適化の知識に関わらず使用可能である。

第45回情報・システム・利用・技術シンポジウム論文集, 172-175, 2022年12月, 東京 Proceedings of the 45th Symposium on Computer Technology of Information, Systems and Applications, AIJ, 172-175, Dec., 2022, Tokyo

3. 多目的設計探査の自動化による効果

多目的設計探査は、目的の条件(以下、目的関数)を満 足するまで設定したパラメータ(以下,設計変数)を変化 させる。従来は図1の上段に示すように、目的関数(出力) が最大または最小になるように設計変数(入力)の変更→ シミュレーション→出力結果の考察といった試行錯誤を 何度も繰り返したため手作業で行うと多くの手間が発生 した。そのため、図1の下段に示すように目的を達成する までこれら操作を自動化した。初期の設計変数を一度作成 して実行することで、数百といったシミュレーション結果 からトレードオフの関係を数時間で求め、設計者へ改良さ れた設計候補を提示できるので大幅な省力化が実現でき る。

4. 多目的設計探査の適用事例

4.1. 空間見通しへの適用

見通しの良し悪しは,空間の魅力度を評価する上で重要 な要因の一つである。以下では,見通しを定量的に把握で きるシミュレーションツールと最適化手法を組み合わせ

日本建築学会情報システム技術委員会

4.1.1 見通しの計算方法

見通しを妨げるもの(躯体など)を3次元 CAD によって 作成し, CAD のフォーマットの一つである STL (Standard Triangulated Language)を入力として見通しシミュレー ションを行う。結果は DXF (Drawing Exchange Format)フ ァイル出力をして 3 次元 CAD によって可視化する。

見通しの判定を図2に示す。図2の①の場合が見通せな い場合である。見通しの計算は式(1)から式(3)を使って行 った。式(1)により直線と面の交点を計算した。式(2)によ り線分 AB 上の交点の有無を判定した。面内に交点がある 場合の判定は,任意形状の多角形に対応できる式(3)によ って行った。式(3)の sign は1か-1のいずれかの値をと る。

①Bは壁に隠れ
 ②Bは壁の手前に
 Aから見えない
 ありAから見える

③B は壁に隠され ず A から見える

図2 見通しの判定

$$\begin{bmatrix} x_b - x_a & x_1 - x_2 & x_1 - x_3 \\ y_b - y_a & y_1 - y_2 & y_1 - y_3 \\ z_b - z_a & z_1 - z_2 & z_1 - z_3 \end{bmatrix} \begin{bmatrix} s \\ t \\ u \end{bmatrix} = \begin{bmatrix} x_1 - x_a \\ y_1 - y_a \\ z_1 - z_a \end{bmatrix}$$
(1)

ただし, (x_a, y_a, z_a) は線分 AB の A の座標, (x_b, y_b, z_b) は B の座標, (x_1, y_1, z_1) から (x_3, y_3, z_3) は面上の 3 点の座標である。

$$0 \le s \le 1 \tag{2}$$

 $\sum_{i=1}^{n} sign \cdot \theta_i = 2\pi \tag{3}$

sign の計算は図3を使って説明する。座標①から⑧が反時計周りに並んでいるとする。交点0と頂点①のベクトル と交点0と頂点②のベクトルの外積から計算されるベクト ルの場合 sign を1とする。θ1はこれら2つのベクトルからできる角度である。交点0と頂点②のベクトルと交点0 と頂点③のベクトルの外積から計算されるベクトルは向 きが反転するので sign を-1とする。この操作を頂点数 n 個分繰り返せばよい。

図3 点の多角形に対する内包判定

4.1.2 吹き抜け形状による見通しへの適用(その1)

6 階建て建物の 6 階床の吹き抜け形状を変化させ,各階 のフロアにおける見通しの最適化を検討した事例を紹介 する。設計変数は図 4 に示す L_1 , L_2 及び L_H 以外の変数で ある。面積 S_1 の吹き抜けは縦寸法 L_H と横寸法 L_1 の長方形 領域に含まれるので各変数の計算式は式(4)から式(7)が 成り立つ。また面積は式(8)によって計算した。同様に面積 S2 の吹き抜けは縦寸法 LH と横寸法 L2 の長方形領域に含 まれるので,各変数の計算は式(4)から式(7)の右下の添え 字を1から2 に置き換えて計算した。

$$A_1 = s(L_1 - S_1/L_H) + S_1/L_H, \ 0 \le s \le 1$$
(4)

$$B_1 = S_1 / A_1 \tag{5}$$

 $X_1 = t(L_1 - A_1), \quad 0 \le t \le 1$ (6) $X_1 = t(L_1 - A_1), \quad 0 \le t \le 1$ (7)

$$Y_{1} = u(L_{H} - B_{1}), \quad 0 \le u \le 1$$
(7)

$$S_1 + S_2 = S$$
, Sは定数 (8)

目的関数は全フロアの見通し度合について、その平均が 最大で且つばらつきが最小になるように設定した。見通し 度合は、ある地点から全ての地点を見通せる場合を100と した時の見通しの割合である。見通し度合のばらつきは、 見通し度合の平均からのずれ(標準偏差)で計算した。図 5 は計算結果である。上段の図は各デザインの見通し度合 の平均(横軸)とばらつき(縦軸)の関係を示したもので あり、下段の図は上段の図の赤丸部分のデザインをコンタ ーにしたものである。コンターの色は見通し度合を表し、 青から赤になるに従って見通しがよいことを表す。図5の 右端のコンター図のように、6Fの吹き抜けを左側に寄せて 大きくすると見通しの平均もばらつきも大きくなる。

4.1.3 吹き抜け形状による見通しへの適用(その2)

図6の上段左図に示すような吹き抜け形状によって見通 しのよい空間を設計する際に多目的設計探査を適用した。 本事例では、5階建て建物の3階床から5階床の吹き抜け 形状を変化させ、各階のフロアにおける見通しの最適化を 検討した。設計変数は、図7に示すように吹き抜けの出張 りの寸法(X1~X5 及び Y1 と Y2)である。目的関数はその 1と同様である。図6の上段右図は、設計探査によって数 百のデザインをプロットしたグラフである。図6の下段図 は、見通し度合をコンターで表したものである。 設計者は 右上のグラフに示されたデザイン候補から意図するデザ インを選択する。見通し度合の平均と見通し度合のばらつ きがちょうど中間程度のデザインを選択すると、下段の赤 枠で囲まれたデザインが選択された。

見通しのよさのコンター(青→赤:見通しがよい) 図6 吹き抜け形状による見通しの設計探査(その2)

4.2 ドーム型サイロの建設コスト最適化への適用

石炭サイロのような粉体の容器構造の計画では、あらか じめ内蔵量が定まっており、その内蔵量に対して容器の形 状と許容応力度設計された建設コストとのおおよその関 係を事前に把握することは重要である。ここではドーム型 のサイロを対象にして、建設コストと地震時の最大変形角 が最小となるサイロの形状を多目的設計探査で求めた検 討結果を紹介する。

サイロの基本形状は図8に示すように半径Rの半球殻と 高さHの円筒で構成する。粉体の内蔵量 V_0 は、R = 26m、 H = 24mのとき頂部からR/2の高さまで貯蔵されている体 積とした。躯体の壁は図8で色を分けて示すように高さ方 向に5つのゾーン (DW1~DW5) に分け、それぞれのゾーン で壁厚と配筋を別々に指定できるように設定した。壁厚は 頂部 DW1 の壁厚T1 (T1は定数 0.25m)と底部 DW5 の壁厚T5 とすると、その間の DW2~DW4 のゾーンの壁厚は高さに応 じて線形補間した。

躯体の基本形状とゾーン分け 図 8

対象とする荷重は複数でも可能だが、簡単のため最も厳 しいと考えられるレベル1に対応する地震荷重だけとし、 容器構造設計指針³⁾に従い Excel で形状に応じた静的荷重 を計算した。地震荷重の内訳を式(9)に示す。

地震荷重=躯体DL+内蔵(側圧+摩擦)+地震力 (9)

地震荷重に対する RC シェルの部材力と変形は汎用プロ グラム MSC Nastran® (MSC Software 社製の登録商標) に よる静的弾性解析により求めた。基本形状に対する躯体の 応力コンターを図9に示す。 kN/m

図 9 基本形状の応力コンター (R=25m、T5=0.25m)

許容応力度設計では、各シェル要素の縦筋、横筋、面外 せん断の最大検定比が 0.9 以下になるように D19@200~ D29@100 まで(鉄筋径は D19, D22, D25, D29 の 4 種、ピッチ は100, 150, 200の3種)の12種の中から配筋をExcelで 選定した。一連の設計フローを図10に示す。

このドーム型サイロに対して設定した多目的設計探査 の問題を以下に示す。

・目的関数:最大変形角DRと建設コストCst

変形角は半球殻部の節点の値とし、コストはそれぞれの 部分のシェル表面積とシェル重量に係数をかけ合わせて 評価できると仮定し、式(10)のように基本形状のコスト

Cst0に対する比で表すこととした。

Cst = (ドーム部+基礎部+仮設部のコスト)/ Cst0 (10)

- ・設計変数:半球殻の半径RとゾーンDW5の壁厚T5 T5は離散値で0.25,0.3,0.35mの中から選定する。
- ・制約条件:半球殻部シェル要素の最大検定比<0.9

図10 許容応力度設計フロー

探査回数は150回実施しそのうち制約条件を満たしたのは148回であった。探査結果の最大変形角DRと建設コストCstに関するパレート図を図11に示す。DRとCstはトレードオフの関係があり、目的関数の最小Cstは0.93であり最小のDRは0.006であった。また、パレート図で3つの曲線が得られているように見えるのは、底部壁厚T5を3つの離散値で与えたためであり、右側の曲線ほど厚い壁厚の結果である。パレート図に示した代表的なデザイン(④, ①, ⑧)の変形形状を図12に示す。

図 13 に建設コスト*Cst*と半径*R*の関係を、図 14 に最大変 形角*DR*と半径*R*の関係を示す。どちらも壁厚の 3 つの離散 値に対する曲線が得られており、*Cst*は*Rが* 20~21m の時に、 *DR*は*Rが* 24~25m の時に最小となっている。また、壁厚が 厚くなるほど*Cst* は大きくなり、*DR*は小さくなる。

このように設計変数の範囲内で、目的関数である変形角 DRと建設コストCstのトレードオフの関係が把握でき、さ らに変形角DRと半径Rの関係、および建設コストCstとRの 関係も把握できた。これらの関係から、設計者は構造物の 形状に対する建設コストの概算を得ることができ、適切な 建設コストとなる実施設計をすることが可能になる。

なお、ここで用いた建設コストの評価式はあくまでも仮 定の値であり、建設コストの概算精度を上げるには過去の 実績に裏付けられた評価式にすることが重要である。

5. まとめ

シミュレーションから設計探査の一連の処理を自動化 することにより,数百といったシミュレーション結果から トレードオフの関係を自動的に求め設計者へ改良された 設計候補を提示できるので,その効果は大きい。また,多 目的設計探査を建築設計及び構造設計に適用しエビデン ス提示による合意形成や説得力向上が可能になることが わかった。

[参考文献]

- 1)Red Cedar Technology: SHERPA An Efficient and Robust Optimization/Search Algorithm, WP-1023, Rev05, 2008.
- 2)<u>https://www.redcedartech.com/pdfs/Siemens-PLM-HEEDS-</u> Discover-better-designs-faster-JA.pdf.

3) 日本建築学会:容器構造設計指針·同解説 第4版, 2010.3.